Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

NR2B-deficient mice are more sensitive to the locomotor stimulant and depressant effects of ethanol.

Genes, brain, and behavior | 2011

The NR2B subunit of N-methyl d-aspartate glutamate receptors influences pharmacological properties and confers greater sensitivity to the modulatory effects of ethanol. This study examined behavioral responses to acute ethanol in a conditional knockout mouse model that allowed for a delayed genetic deletion of the NR2B subunit to avoid mouse lethality. Mice lacking the NR2B gene (knockout) were produced by mating NR2B[f/f] mice with CAMKIIa-driven tTA transgenic mice and the tetO-CRE transgenic mice. Adult male and female offspring representing each of the resultant genotypes (knockout, CAM, CRE and wildtype mice) were tested for open-field locomotor activity following acute low- and high-dose ethanol challenge as well as loss of righting reflex. Findings indicate that male and female mice lacking the NR2B subunit exhibited greater overall activity in comparison to other genotypes during the baseline locomotor activity test. NR2B knockout mice exhibited an exaggerated stimulant response to 1.5 g/kg (i.p.) and an exaggerated depressant response to 3.0 g/kg (i.p.) ethanol challenge. In addition, NR2B knockout mice slept longer following a high dose of ethanol (4.0 g/kg, i.p.). To evaluate pharmacokinetics, clearance rates of ethanol (1.5, 4.0 g/kg, i.p.) were measured and showed that female NR2B knockouts had a faster rate of metabolism only at the higher ethanol dose. Western blot analyses confirmed significant reduction in NR2B expression in the forebrain of knockout mice. Collectively, these data indicate that the NR2B subunit of the N-methyl d-aspartate glutamate receptor is involved in regulating low-dose stimulant effects of ethanol and the depressant/hypnotic effects of ethanol.

Pubmed ID: 21762461 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Associated grants

  • Agency: NIAAA NIH HHS, United States
    Id: U01 AA013514
  • Agency: NIAAA NIH HHS, United States
    Id: U01 AA014095
  • Agency: NIAAA NIH HHS, United States
    Id: AA13514
  • Agency: NIAAA NIH HHS, United States
    Id: AA14095

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NeuroMab (tool)

RRID:SCR_003086

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

View all literature mentions

Anti-GluN2B/NR2B Glutamate Receptor Antibody (antibody)

RRID:AB_10672980

This monoclonal targets NR2B glutamate receptor

View all literature mentions

Anti-GluN2B/NR2B Glutamate Receptor Antibody (antibody)

RRID:AB_2232584

This monoclonal targets GluN2B/NR2B glutamate receptor

View all literature mentions