Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

HDAC inhibition promotes cardiogenesis and the survival of embryonic stem cells through proteasome-dependent pathway.

Journal of cellular biochemistry | 2011

Histone deacetylase (HDAC) inhibition plays a crucial role in mediating cardiogenesis and myocardial protection, whereas HDAC degradation has recently attracted attention in mediating the biological function of HDACs. However, it remains unknown whether HDAC inhibition modulates cardiogenesis and embryonic stem cell (ESC) survival through the proteasome pathway. Using the well-established mouse ESC culture, we demonstrated that HDAC inhibitors, both trichostatin A (TSA,50  nmol/L) and sodium butyrate (NaB, 200  µmol/L) that causes the pronounced reduction of HDAC4 activity, decreased cell death and increased viability of ESCs in response to oxidant stress. HDAC inhibition reduced the cleaved caspases 3, 6, 9, PARP, and TUNEL positive ESCs, which were abrogated with MG132 (0.5  µmol/L), a specific proteasome inhibitor. Furthermore, HDAC inhibition stimulates the growth of embryoid bodies (EB), which are associated with a faster spontaneous rhythmic contraction. HDAC inhibition increases the up-regulation of GATA4, MEF2C, Nkx2.5, cardiac actin, and α-SMA mRNA and protein levels that were abrogated by MG132. TSA and NaB resulted in a significant increase in cardiac lineage commitments that were blocked by the proteasome inhibition. Notably, HDAC inhibitors led to noticeable HDAC4 degradation, which was effectively prevented by MG132. Luciferase assay demonstrates an activation of MEF2 cardiac transcriptional factor by HDAC inhibition, which was repressed by MG132, revealing that the degradation of HDAC4 allows for the activation of MEF2. Taken together, our study is the first to demonstrate that HDAC inhibition through proteasome pathway forms a novel signaling to determine the cardiac lineage commitment and elicits the survival pathway.

Pubmed ID: 21751234 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK085065
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL089405

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Clontech (tool)

RRID:SCR_004423

An Antibody supplier

View all literature mentions