Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation.

The EMBO journal | 2011

The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.

Pubmed ID: 21685874 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: CIHR, Canada
  • Agency: NCI NIH HHS, United States
    Id: R01 CA132878
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM047867
  • Agency: NCI NIH HHS, United States
    Id: R01 CA132878-04
  • Agency: NCI NIH HHS, United States
    Id: CA132878
  • Agency: NCI NIH HHS, United States
    Id: R01 CA132878-05
  • Agency: NIGMS NIH HHS, United States
    Id: GM46787
  • Agency: Wellcome Trust, United Kingdom

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ESPript 2.2 (tool)

RRID:SCR_006587

A utility, whose output is a PostScript file of aligned sequences with graphical enhancements. Its main input is an ascii file of pre-aligned sequences. Optional files allow further rendering. The program calculates a similarity score for each residue of the aligned sequences. The output shows: * Secondary Structures * Aligned sequences * Similarities * Accessibility * Hydropathy * User-supplied markers * Intermolecular contacts In addition, similarity score can be written in the bfactor column of a pdb file, to enable direct display of highly conserved areas. You can run ESPript from this server with the HTML interface. It is configured for a maximum of 1,000 sequences. Links to webESPript * ENDscript: you can upload a PDB file or enter a PDB code such as 1M85. The programs DSSP and CNS are executed via the interface, so as to obtain an ESPript figure with a lot of structural information (secondary structure elements, intermolecular contacts). You can also find homologous sequences with a BLAST search, perform multiple sequence alignments with MULTALIN or CLUSTALW and create an image with BOBSCRIPT or MOLSCRIPT to show similarities on your 3D structure. * ProDom: you can enter a sequence identifier to find homologous domains, perform multiple sequence alignments with MULTALIN and click on the link to ESPript. * Predict Protein: you can receive a mail in text (do not use the HTML option when you submit your request in Predict Protein) with aligned sequences and numerous information including secondary structure prediction. Click on a special html link to upload your mail in ESPript. * NPS(at): you can execute the programs BLAST and CLUSTALW to obtain multiple alignments. You can predict secondary structure elements and click on the link to ESPript. This program started in the laboratory of Dr Richard Wade at the Institut de Biologie Structurale, Grenoble. It moved later to the Laboratory of Molecular Biophysics in Oxford, then to the Institut de Pharmacologie et de Biologie Structurale in Toulouse. It is now developed in the Laboratoire de BioCristallographie of Dr Richard Haser, Institut de Biologie et de Chimie des Prot��������ines, Lyon and in the Laboratoire de Biologie Mol��������culaire et de Relations Plantes-Organismes, group of Dr Daniel Kahn, Institut National de la Recherche Agronomique de Toulouse.

View all literature mentions

Refmac (tool)

RRID:SCR_014225

A molecular refinement program with two main modes: REVIEW, which checks and updates the input model to establish that the geometric restraints can be properly set up, and REFINE mode, which is the standard mode and documented in keywords. In REVIEW users can: check model coordinates and write an extended output set of coordinates, find disulphide bonds and other covalent links, cis-peptides, output the sequence and REMARK records. In REFINEMENT mode users can carry out rigid body, tls, restrained or unrestrained refinement against Xray data, or idealisation of a macromolecular structure. Also in REFINEMENT mode, Refmac produces an MTZ output file containing weighted coefficients for SigmaA weighted mFo-DFcalc and 2mFo-DFcalc maps. The program is supported by CCP4.

View all literature mentions

MolProbity (tool)

RRID:SCR_014226

A structure-validation web application which provides an expert-system consultation about the accuracy of a macromolecular structure model, diagnosing local problems and enabling their correction. MolProbity works best as an active validation tool (used as soon as a model is available and during each rebuild/refine loop) and when used for protein and RNA crystal structures, but it may also work well for DNA, ligands and NMR ensembles. It produces coordinates, graphics, and numerical evaluations that integrate with either manual or automated use in systems such as PHENIX, KiNG, or Coot.

View all literature mentions