Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome.

Nature structural & molecular biology | 2011

ATR-X (alpha-thalassemia/mental retardation, X-linked) syndrome is a human congenital disorder that causes severe intellectual disabilities. Mutations in the ATRX gene, which encodes an ATP-dependent chromatin-remodeler, are responsible for the syndrome. Approximately 50% of the missense mutations in affected persons are clustered in a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, ADD(ATRX)), whose function has remained elusive. Here we identify ADD(ATRX) as a previously unknown histone H3-binding module, whose binding is promoted by lysine 9 trimethylation (H3K9me3) but inhibited by lysine 4 trimethylation (H3K4me3). The cocrystal structure of ADD(ATRX) bound to H3(1-15)K9me3 peptide reveals an atypical composite H3K9me3-binding pocket, which is distinct from the conventional trimethyllysine-binding aromatic cage. Notably, H3K9me3-pocket mutants and ATR-X syndrome mutants are defective in both H3K9me3 binding and localization at pericentromeric heterochromatin; thus, we have discovered a unique histone-recognition mechanism underlying the ATR-X etiology.

Pubmed ID: 21666679 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM071004
  • Agency: CIHR, Canada
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM058012-13
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM058012
  • Agency: NIGMS NIH HHS, United States
    Id: GM058012
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM071004-09
  • Agency: NIGMS NIH HHS, United States
    Id: GM071004

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Covance (tool)

RRID:SCR_001224

A contract research organization providing drug development and animal testing services. Under the name Covance Research Products Inc., based in Denver, Pennsylvania, the company also deals in the import, breeding and sale of laboratory animals. It breeds dogs, rabbits, guinea pigs, non-human primates, and pigs, and runs the largest non-human primate laboratory in Germany. (Wikipedia)

View all literature mentions

Phenix (tool)

RRID:SCR_014224

A Python-based software suite for the automated determination of molecular structures using X-ray crystallography and other methods. Phenix includes programs for assessing data quality, experimental phasing, molecular replacement, model building, structure refinement, and validation. It also includes tools for reflection data and creating maps and models. Phenix can also be used for neutron crystallography. Tutorials and examples are available in the documentation tab.

View all literature mentions

CCP4 (tool)

RRID:SCR_007255

Portal for Macromolecular X-Ray Crystallography to produce and support an integrated suite of programs that allows researchers to determine macromolecular structures by X-ray crystallography, and other biophysical techniques. Used in the education and training of scientists in experimental structural biology for determination and analysis of protein structure.

View all literature mentions

HeLa (tool)

RRID:CVCL_0030

Cell line HeLa is a Cancer cell line with a species of origin Homo sapiens

View all literature mentions

NIH 3T3 (tool)

RRID:CVCL_0594

Cell line NIH 3T3 is a Spontaneously immortalized cell line with a species of origin Mus musculus

View all literature mentions