Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation.

PLoS computational biology | 2011

Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca(2+) versus voltage dependent inactivation of L-type Ca(2+) current (I(CaL)); kinetics for the transient outward, rapid delayed rectifier (I(Kr)), Na(+)/Ca(2+) exchange (I(NaCa)), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca(2+) (including peak and decay) and intracellular sodium ([Na(+)](i)) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by I(Kr) block during slow pacing, and AP and Ca(2+) alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca(2+)/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca(2+) cycling. I(NaCa) linked Ca(2+) alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in [Na(+)](i), via its modulation of the electrogenic Na(+)/K(+) ATPase current. At fast pacing rates, late Na(+) current and I(CaL) were also contributors. APD shortening during restitution was primarily dependent on reduced late Na(+) and I(CaL) currents due to inactivation at short diastolic intervals, with additional contribution from elevated I(Kr) due to incomplete deactivation.

Pubmed ID: 21637795 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL049054
  • Agency: NHLBI NIH HHS, United States
    Id: R56 HL049054
  • Agency: NHLBI NIH HHS, United States
    Id: R01-HL049054-18
  • Agency: PHS HHS, United States
    Id: R01-HLR01033343-26

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


CellML (tool)

RRID:SCR_008061

The CellML language is an open standard based on the XML markup language. The purpose of CellML is to store and exchange computer-based mathematical models. CellML allows scientists to share models even if they are using different model-building software. It also enables them to reuse components from one model in another, thus accelerating model building. Although CellML was originally intended for the description of biological models; CellML includes information about model structure (how the parts of a model are organizationally related to one another), mathematics (equations describing the underlying processes) and metadata (additional information about the model that allows scientists to search for specific models or model components in a database or other repository). The CellML team is committed to providing freely available tools for creating, editing, and using CellML models. We provide information regarding tools we are developing internally and links to external projects developing tools which utilize the CellML format. Please let us know if you have an open source CellML tool looking for a home on the internet, as we are able to offer limited hosting services on cellml.org.

View all literature mentions

pClamp (tool)

RRID:SCR_011323

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

View all literature mentions

SPARC Project (tool)

RRID:SCR_017041

The SPARC data repository as of 2023 is an open data repository developed as part of the NIH SPARC initiative and has been used by SPARC funded investigator groups to curate and publish high quality datasets related to the autonomic nervous system. We are thrilled that as of August 2022, SPARC is accepting datasets from investigators that are not funded through the NIH SPARC program. The NIH's Common Fund Stimulating Peripheral Activity to Relieve Conditions (SPARC) program aims to transform our understanding of these nerve-organ interactions and ultimately advance neuromodulation field toward precise treatment of diseases and conditions for which conventional therapies fall short.

View all literature mentions