Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A gene-phenotype network for the laboratory mouse and its implications for systematic phenotyping.

PloS one | 2011

The laboratory mouse is the pre-eminent model organism for the dissection of human disease pathways. With the advent of a comprehensive panel of gene knockouts, projects to characterise the phenotypes of all knockout lines are being initiated. The range of genotype-phenotype associations can be represented using the Mammalian Phenotype ontology. Using publicly available data annotated with this ontology we have constructed gene and phenotype networks representing these associations. These networks show a scale-free, hierarchical and modular character and community structure. They also exhibit enrichment for gene coexpression, protein-protein interactions and Gene Ontology annotation similarity. Close association between gene communities and some high-level ontology terms suggests that systematic phenotyping can provide a direct insight into underlying pathways. However some phenotypes are distributed more diffusely across gene networks, likely reflecting the pleiotropic roles of many genes. Phenotype communities show a many-to-many relationship to human disease communities, but stronger overlap at more granular levels of description. This may suggest that systematic phenotyping projects should aim for high granularity annotations to maximise their relevance to human disease.

Pubmed ID: 21625554 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: MC_U142684171

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Gene Ontology (tool)

RRID:SCR_002811

Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.

View all literature mentions

IntAct (tool)

RRID:SCR_006944

Open source database system and analysis tools for molecular interaction data. All interactions are derived from literature curation or direct user submissions. Direct user submissions of molecular interaction data are encouraged, which may be deposited prior to publication in a peer-reviewed journal. The IntAct Database contains (Jun. 2014): * 447368 Interactions * 33021 experiments * 12698 publications * 82745 Interactors IntAct provides a two-tiered view of the interaction data. The search interface allows the user to iteratively develop complex queries, exploiting the detailed annotation with hierarchical controlled vocabularies. Results are provided at any stage in a simplified, tabular view. Specialized views then allows "zooming in" on the full annotation of interactions, interactors and their properties. IntAct source code and data are freely available.

View all literature mentions