We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome.

Genes & development | May 1, 2011

Removal of the assembly factor eukaryotic initiation factor 6 (eIF6) is critical for late cytoplasmic maturation of 60S ribosomal subunits. In mammalian cells, the current model posits that eIF6 release is triggered following phosphorylation of Ser 235 by activated protein kinase C. In contrast, genetic studies in yeast indicate a requirement for the ortholog of the SBDS (Shwachman-Bodian-Diamond syndrome) gene that is mutated in the inherited leukemia predisposition disorder Shwachman-Diamond syndrome (SDS). Here, by isolating late cytoplasmic 60S ribosomal subunits from Sbds-deleted mice, we show that SBDS and the GTPase elongation factor-like 1 (EFL1) directly catalyze eIF6 removal in mammalian cells by a mechanism that requires GTP binding and hydrolysis by EFL1 but not phosphorylation of eIF6 Ser 235. Functional analysis of disease-associated missense variants reveals that the essential role of SBDS is to tightly couple GTP hydrolysis by EFL1 on the ribosome to eIF6 release. Furthermore, complementary NMR spectroscopic studies suggest unanticipated mechanistic parallels between this late step in 60S maturation and aspects of bacterial ribosome disassembly. Our findings establish a direct role for SBDS and EFL1 in catalyzing the translational activation of ribosomes in all eukaryotes, and define SDS as a ribosomopathy caused by uncoupling GTP hydrolysis from eIF6 release.

Pubmed ID: 21536732 RIS Download

Mesh terms: Animals | Bone Marrow Diseases | Catalysis | Cells, Cultured | Disease Models, Animal | Eukaryotic Initiation Factors | Exocrine Pancreatic Insufficiency | Guanosine Triphosphate | Humans | Hydrolysis | Lipomatosis | Liver | Mice | Mice, Inbred C57BL | Models, Molecular | Mutation | Peptide Initiation Factors | Phosphorylation | Protein Binding | Protein Structure, Tertiary | Proteins | Ribosome Subunits, Large, Eukaryotic | Ribosomes

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, Id: R24 AI049393
  • Agency: NHGRI NIH HHS, Id: 1R01HG005853-01
  • Agency: NHGRI NIH HHS, Id: R01 HG005853
  • Agency: Medical Research Council, Id: MC_U105161083
  • Agency: Medical Research Council, Id: MOP-102629
  • Agency: Canadian Institutes of Health Research, Id: MC_U105178805
  • Agency: Medical Research Council, Id:
  • Agency: Cancer Research UK, Id:

BioGRID (Data, Interactions)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.