Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Weight-conserving characterization of complex functional brain networks.

NeuroImage | 2011

Complex functional brain networks are large networks of brain regions and functional brain connections. Statistical characterizations of these networks aim to quantify global and local properties of brain activity with a small number of network measures. Important functional network measures include measures of modularity (measures of the goodness with which a network is optimally partitioned into functional subgroups) and measures of centrality (measures of the functional influence of individual brain regions). Characterizations of functional networks are increasing in popularity, but are associated with several important methodological problems. These problems include the inability to characterize densely connected and weighted functional networks, the neglect of degenerate topologically distinct high-modularity partitions of these networks, and the absence of a network null model for testing hypotheses of association between observed nontrivial network properties and simple weighted connectivity properties. In this study we describe a set of methods to overcome these problems. Specifically, we generalize measures of modularity and centrality to fully connected and weighted complex networks, describe the detection of degenerate high-modularity partitions of these networks, and introduce a weighted-connectivity null model of these networks. We illustrate our methods by demonstrating degenerate high-modularity partitions and strong correlations between two complementary measures of centrality in resting-state functional magnetic resonance imaging (MRI) networks from the 1000 Functional Connectomes Project, an open-access repository of resting-state functional MRI datasets. Our methods may allow more sound and reliable characterizations and comparisons of functional brain networks across conditions and subjects.

Pubmed ID: 21459148 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: 1U54MH091657-01

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Human Connectome Coordination Facility (tool)

RRID:SCR_008749

Consortium to comprehensively map long-distance brain connections and their variability. It is acquiring data and developing analysis pipelines for several modalities of neuroimaging data plus behavioral and genetic data from healthy adults.

View all literature mentions

Brain Connectivity Toolbox (tool)

RRID:SCR_004841

A large selection of complex network measures in Matlab that are increasingly used to characterize structural and functional brain connectivity datasets. Several people have contributed to the toolbox, and if you wish to contribute with a new function or set of functions, please contact Olaf Sporns. All efforts have been made to avoid errors, but users are strongly urged to independently verify the accuracy and suitability of toolbox functions for the chosen application. Please report bugs or substantial improvements.

View all literature mentions