Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

95% high-quality coverage (more than five reads). The amplification of the genomic DNA moderately inflates the variation in coverage across the euchromatic portion of the genome. It also increases the frequency of chimeric clones. But the low frequency and random genomic distribution of the chimeric clones limits their impact on the final assemblies. This method provides a solid path forward for population genomic sequencing and offers applications to many other systems in which small amounts of genomic DNA have unique experimental relevance." />

Circumventing heterozygosity: sequencing the amplified genome of a single haploid Drosophila melanogaster embryo.

Genetics | 2011

Heterozygosity is a major challenge to efficient, high-quality genomic assembly and to the full genomic survey of polymorphism and divergence. In Drosophila melanogaster lines derived from equatorial populations are particularly resistant to inbreeding, thus imposing a major barrier to the determination and analyses of genomic variation in natural populations of this model organism. Here we present a simple genome sequencing protocol based on the whole-genome amplification of the gynogenetically derived haploid genome of a progeny of females mated to males homozygous for the recessive male sterile mutation, ms(3)K81. A single "lane" of paired-end sequences (2 × 76 bp) provides a good syntenic assembly with >95% high-quality coverage (more than five reads). The amplification of the genomic DNA moderately inflates the variation in coverage across the euchromatic portion of the genome. It also increases the frequency of chimeric clones. But the low frequency and random genomic distribution of the chimeric clones limits their impact on the final assemblies. This method provides a solid path forward for population genomic sequencing and offers applications to many other systems in which small amounts of genomic DNA have unique experimental relevance.

Pubmed ID: 21441209 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NHGRI NIH HHS, United States
    Id: R01 HG002942
  • Agency: NHGRI NIH HHS, United States
    Id: HG02942

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NCBI Sequence Read Archive (SRA) (tool)

RRID:SCR_004891

Repository of raw sequencing data from next generation of sequencing platforms including including Roche 454 GS System, Illumina Genome Analyzer, Applied Biosystems SOLiD System, Helicos Heliscope, Complete Genomics, and Pacific Biosciences SMRT. In addition to raw sequence data, SRA now stores alignment information in form of read placements on reference sequence. Data submissions are welcome. Archive of high throughput sequencing data,part of international partnership of archives (INSDC) at NCBI, European Bioinformatics Institute and DNA Database of Japan. Data submitted to any of this three organizations are shared among them.

View all literature mentions

FlyBase (tool)

RRID:SCR_006549

Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.

View all literature mentions