Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

PLoS genetics | 2011

Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.

Pubmed ID: 21437275 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM063066
  • Agency: NIGMS NIH HHS, United States
    Id: GM063006

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Institute of General Medical Sciences: Research Funding (tool)

RRID:SCR_003096

NIGMS places great emphasis on the support of individual, investigator-initiated grants within its scientific mission areas. Most grants are for research projects (R01), but NIGMS also funds program projects (P01) as well as some research resources. The Institute encourages research in certain scientific areas through requests for applications and program announcements. This website has information for upcoming grants, minority grants as well as training opportunities in medical research in the following disciplines: cell biology, biophysics, genetics, developmental biology, pharmacology, physiology, biological chemistry, bioinformatics, and computational biology.

View all literature mentions

BD CellQuest Pro (tool)

RRID:SCR_014489

A software for acquiring and analyzing flow cytometry data. The user can create plots with elements like regions, gates, statistics, markers, and annotated text. The software can also be used for batch analysis or quality control of analysis. Results can be exported and saved.

View all literature mentions