Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG.

Computational intelligence and neuroscience | 2011

NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions.

Pubmed ID: 21437174 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDCD NIH HHS, United States
    Id: DC6435
  • Agency: NCRR NIH HHS, United States
    Id: UL1 RR024131
  • Agency: NIDCD NIH HHS, United States
    Id: R01 DC4855
  • Agency: NIDCD NIH HHS, United States
    Id: R01 DC010145
  • Agency: NIDCD NIH HHS, United States
    Id: DC10145
  • Agency: NIDCD NIH HHS, United States
    Id: R01 DC004855
  • Agency: NINDS NIH HHS, United States
    Id: NS67962
  • Agency: NIDCD NIH HHS, United States
    Id: R01 DC006435

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Brainstorm (tool)

RRID:SCR_001761

Software as collaborative, open source application dedicated to analysis of brain recordings: MEG, EEG, fNIRS, ECoG, depth electrodes and animal invasive neurophysiology. User-Friendly Application for MEG/EEG Analysis.

View all literature mentions

OpenMEEG (tool)

RRID:SCR_002510

A C++ package for low-frequency bio-electromagnetism solving forward problems in the field of EEG and MEG with very high accuracy.

View all literature mentions

FieldTrip (tool)

RRID:SCR_004849

Software tool for analysis of MEG, EEG, and other electrophysiological data. Used by experimental neuroscientists.

View all literature mentions

MRIcro Software (tool)

RRID:SCR_008264

MRIcro allows Windows and Linux computers view medical images. It is a standalone program, but includes tools to complement SPM (software that allows neuroimagers to analyze MRI, fMRI and PET images). MRIcro allows efficient viewing and exporting of brain images. In addition, it allows neuropsychologists to identify regions of interest (ROIs, e.g. lesions). MRIcro can create Analyze format headers for exporting brain images to other platforms. Some features of MRIcro are: - Converts medical images to SPM friendly Analyze format. - View Analyze format images (big or little endian). - Create Analyze format headers (big or little endian). - Create 3D regions of interest (with computed volume & intensity). - Overlap multiple regions of interest. - Rotate images to match SPM template images. - Export images to BMP, JPEG, PNG or TIF format. - Yoked images: linked viewing of multiple images (e.g. view same coordinates of PET and MRI scans). Users familiar with other Windows programs will find that this software is fairly straightforward to use. Resting the mouse cursor over a button will cause a text hint to appear over the button. However, a tutorial with a step by step guide of how to use MRIcro with SPM is available.

View all literature mentions

eConnectome (tool)

RRID:SCR_009618

An open-source MATLAB software package for imaging brain functional connectivity from electrophysiological signals. It provides interactive graphical interfaces for EEG/ECoG/MEG preprocessing, source estimation, connectivity analysis and visualization. Connectivity from EEG/ECoG/MEG can be mapped over sensor and source domains. This package is designed for use by researchers in neuroscience, psychology, cognitive science, clinical neurophysiology, neurology and other disciplines. The graphical interface-based platform requires little programming knowledge or experience with MATLAB. eConnectome is developed by the Biomedical Functional Imaging and Neuroengineering Laboratory at the University of Minnesota, directed by Dr. Bin He. The visualization module is jointly developed with Drs. Fabio Babiloni and Laura Astolfi at the University of Rome La Sapienza.

View all literature mentions

Neuroimaging in Python (tool)

RRID:SCR_013141

Community site to make brain imaging research easier that aims to build software that is clearly written, clearly explained, a good fit for the underlying ideas, and a natural home for collaboration.

View all literature mentions

iso2mesh (tool)

RRID:SCR_013202

A Matlab / Octave-based mesh generation toolbox designed for easy creation of high quality surface and tetrahedral meshes from 3D volumetric images. It contains a rich set of mesh processing scripts/programs, functioning independently or interfacing with external free meshing utilities. Iso2mesh toolbox can operate directly on 3D binary, segmented or gray-scale images, such as those from MRI or CT scans, making it particularly suitable for multi-modality medical imaging data analysis or multi-physics modeling.

View all literature mentions