Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration.

Neurobiology of disease | 2011

Tuberous sclerosis complex (TSC) is a neurogenetic disorder that often causes brain abnormalities leading to epilepsy, developmental delay, and autism. TSC is caused by inactivating mutations in either of the genes encoding the proteins hamartin (TSC1) and tuberin (TSC2). These proteins form a heterodimer that inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway, controlling translation and cell growth. Loss of either protein results in dysregulated mTORC1 activation, an important aspect of TSC pathogenesis. About thirty percent of TSC patients have cerebellar pathology that is poorly understood. To investigate the effects of TSC on the cerebellum, we created a mouse model in which the Tsc2 gene was selectively deleted from Purkinje cells starting at postnatal day 6 (P6). The loss of Tsc2 caused a progressive increase in Purkinje cell size and subsequent death from apoptosis. Purkinje cell loss was predominantly cell type specific and associated with motor deficits. Immunohistochemical analysis showed that both endoplasmic reticulum (ER) and oxidative stress were increased in Tsc2-null Purkinje cells. The cell death and ER stress phenotypes were rescued by treatment with the mTORC1 inhibitor rapamycin. To assess whether the murine Purkinje cell loss has a correlate to the human TSC, we analyzed postmortem cerebellum samples from TSC patients and detected Purkinje cell loss in half of the samples. Our results establish a critical role for the TSC complex in Purkinje cell survival by regulating ER and oxidative stress and reveal a novel aspect of TSC neuropathology.

Pubmed ID: 21419848 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS060804
  • Agency: NINDS NIH HHS, United States
    Id: R01NS060804
  • Agency: NCRR NIH HHS, United States
    Id: TL1 RR024147
  • Agency: NCRR NIH HHS, United States
    Id: TL1RR024147
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS060804-03
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS060804-04

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Adobe Photoshop (tool)

RRID:SCR_014199

Software for image processing, analysis, and editing. The software includes features such as touch capabilities, a customizable toolbar, 2D and 3D image merging, and Cloud access and options.

View all literature mentions