• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae.

The acetylation of histone H3 on lysine 56 (H3-K56) occurs during S phase and contributes to the processes of DNA damage repair and histone gene transcription. Hst3 and Hst4 have been implicated in the removal of histone H3-K56 acetylation in Saccharomyces cerevisiae. Here, we show that Hst3 and Hst4 regulate the replicative lifespan of S. cerevisiae mother cells. An hst3Δ hst4Δ double-mutant strain, in which acetylation of histone H3-K56 persists throughout the genome during the cell cycle, exhibits genomic instability, which is manifested by a loss of heterozygosity with cell aging. Furthermore, we show that in the absence of other proteins Hst3 and Hst4 can deacetylate nucleosomal histone H3-K56 in a nicotinamide adenine dinucleotide(NAD)(+) -dependent manner. Our results suggest that Hst3 and Hst4 regulate replicative lifespan through their ability to deacetylate histone H3-K56 to minimize genomic instability.

Pubmed ID: 21401809