Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Characterization of the contradictory chromatin signatures at the 3' exons of zinc finger genes.

PloS one | 2011

The H3K9me3 histone modification is often found at promoter regions, where it functions to repress transcription. However, we have previously shown that 3' exons of zinc finger genes (ZNFs) are marked by high levels of H3K9me3. We have now further investigated this unusual location for H3K9me3 in ZNF genes. Neither bioinformatic nor experimental approaches support the hypothesis that the 3' exons of ZNFs are promoters. We further characterized the histone modifications at the 3' ZNF exons and found that these regions also contain H3K36me3, a mark of transcriptional elongation. A genome-wide analysis of ChIP-seq data revealed that ZNFs constitute the majority of genes that have high levels of both H3K9me3 and H3K36me3. These results suggested the possibility that the ZNF genes may be imprinted, with one allele transcribed and one allele repressed. To test the hypothesis that the contradictory modifications are due to imprinting, we used a SNP analysis of RNA-seq data to demonstrate that both alleles of certain ZNF genes having H3K9me3 and H3K36me3 are transcribed. We next analyzed isolated ZNF 3' exons using stably integrated episomes. We found that although the H3K36me3 mark was lost when the 3' ZNF exon was removed from its natural genomic location, the isolated ZNF 3' exons retained the H3K9me3 mark. Thus, the H3K9me3 mark at ZNF 3' exons does not impede transcription and it is regulated independently of the H3K36me3 mark. Finally, we demonstrate a strong relationship between the number of tandemly repeated domains in the 3' exons and the H3K9me3 mark. We suggest that the H3K9me3 at ZNF 3' exons may function to protect the genome from inappropriate recombination rather than to regulate transcription.

Pubmed ID: 21347206 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NHGRI NIH HHS, United States
    Id: U54HG004558
  • Agency: NHGRI NIH HHS, United States
    Id: U54 HG004558
  • Agency: NIEHS NIH HHS, United States
    Id: U01 ES017154
  • Agency: NIEHS NIH HHS, United States
    Id: U01ES017154
  • Agency: NHGRI NIH HHS, United States
    Id: R01HG004348
  • Agency: NHGRI NIH HHS, United States
    Id: R01 HG004348
  • Agency: NCI NIH HHS, United States
    Id: R01CA45250

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Roadmap Epigenomics Project (tool)

RRID:SCR_008924

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 11, 2022. Project for human epigenomic data from experimental pipelines built around next-generation sequencing technologies to map DNA methylation, histone modifications, chromatin accessibility and small RNA transcripts in stem cells and primary ex vivo tissues selected to represent normal counterparts of tissues and organ systems frequently involved in human disease. Consortium expects to deliver collection of normal epigenomes that will provide framework or reference for comparison and integration within broad array of future studies. Consortium is also committed to development, standardization and dissemination of protocols, reagents and analytical tools to enable research community to utilize, integrate and expand upon this body of data.

View all literature mentions

BioAnalyzer 2100 (tool)

RRID:SCR_019715

2100 Bioanalyzer system is an established automated electrophoresis tool for the sample quality control of biomolecules. The 2100 Bioanalyzer instrument, together with the 2100 Expert Software and Bioanalyzer assays, provide highly precise analytical evaluation of various samples types in many workflows, including next generation sequencing (NGS), gene expression, biopharmaceutical, and gene editing research. Digital data is provided in a timely manner and delivers objective assessment of sizing, quantitation, integrity and purity from DNA, RNA, and proteins. Minimal sample volumes are required for an accurate result, and the data may be exported in a many different formats for ease-of-use.

View all literature mentions

Hep-G2 (tool)

RRID:CVCL_0027

Cell line Hep-G2 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

U2OS (tool)

RRID:CVCL_0042

Cell line U2OS is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions