Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex.

The Journal of comparative neurology | 2011

Relatively little is known about the subcellular localization of low threshold Ca²+ channels (T-channels) in the brain. Using immunocytochemical labeling and preembedding immunoperoxidase and silver-enhanced immunogold electron microscopy, we localized T-channel subunit Ca(v) 3.3 in rodent cerebral cortex and thalamus. Double immunofluorescent staining demonstrated that Ca(v) 3.3-labeled neurons in cerebral cortex are a subgroup of GABAergic interneurons that coexpress calbindin and in half of the cases parvalbumin. In the thalamus, virtually all reticular nucleus (RTN) neurons were immunopositive for Ca(v) 3.3, while neurons in dorsal thalamic nuclei were nonimmunoreactive. At the electron microscopic (EM) level, in cortical layers IV-V and RTN neurons, Ca(v) 3.3 immunoreactivity was mainly associated with membranes of dendrites but with some localization in cytoplasm. None was found in axon terminals. In cortex, ≈73% of immunogold particles were present in close proximity to synaptic contacts (<0.5 μm from the postsynaptic density), while 27% were distributed along membranes at extrasynaptic sites (>0.5 μm from the postsynaptic density). In RTN, ≈57% particles were evenly distributed along perisynaptic membranes and the remaining 43% of particles were diffusely localized at extrasynaptic membranes. The density of particles along the dendritic membranes of cortical neurons was 40% higher than in RTN neurons. These results suggest that Ca(v) 3.3 plays a role in regulating GABAergic neurons whose actions underlie thalamocortical rhythmicity.

Pubmed ID: 21344408 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: NS 21377

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.