Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ionizing radiation-induced TAp63α phosphorylation at C-terminal S/TQ motifs requires the N-terminal transactivation (TA) domain.

Cell cycle (Georgetown, Tex.) | 2011

TAp63α, a homolog of p53 and one of six alternatively spliced p63 isoforms, is a critical mediator of the ionizing radiation (IR)-induced DNA damage response in female germ cells and also tumor suppression in somatic cells. The ΔNp63α isoform, lacking the N-terminal transactivation (TA) domain, is associated with oncogenic potential. The mechanism of p63 functional regulation is not well understood. TAp63α is phosphorylated by ionizing radiation (IR)-induced DNA damage and gene transactivation is likely to be involved. Based on information gleaned from studies on p53, we explored the possibility that TAp63α S/TQ sites may be phosphorylated by IR-induced DNA damage. Our findings show a wortmanin-sensitive kinase phosphorylates TAp63α at C-terminal Ser-Gln and Thr-Gln (S/TQ) sites but not N-terminal S/TQ sites. ΔNp63α, lacking the TA domain, and TAp63γ, lacking C-terminal domains, including S/TQ sites, fail to undergo IR-induced phosphorylation. We propose a model for TA domain-dependent C-terminal phosphorylation drawing from previously described self-inactivating intramolecular interaction between N-terminal TA domain and C-terminal Transactivation Inhibitory Domain (TID) of TAp63α. A specific topology adopted only by TAp63α, but not possible for ΔNp63α or TAp63γ, may lead to TAp63α-specific kinase recruitment, phosphorylation and self-inactivation release. TID-lacking TAp63γ, like p53, is constitutively active and thus may forgo phosphorylation-dependent activation. Thus, p53 is regulated by protein stabilization and TAp63α by protein activation but both appear to involve S/TQ phosphorylation. The difference in phosphorylation potential of TAp63α and ΔNp63α may in part help explain why the two similar isoforms have diametrically opposite tumor suppression and oncogene functions, respectively.

Pubmed ID: 21325887 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.