Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis.

The Journal of general physiology | 2011

TRPV3 is a thermosensitive channel that is robustly expressed in skin keratinocytes and activated by innocuous thermal heating, membrane depolarization, and chemical agonists such as 2-aminoethyoxy diphenylborinate, carvacrol, and camphor. TRPV3 modulates sensory thermotransduction, hair growth, and susceptibility to dermatitis in rodents, but the molecular mechanisms responsible for controlling TRPV3 channel activity in keratinocytes remain elusive. We show here that receptor-mediated breakdown of the membrane lipid phosphatidylinositol (4,5) bisphosphate (PI(4,5)P(2)) regulates the activity of both native TRPV3 channels in primary human skin keratinocytes and expressed TRPV3 in a HEK-293-derived cell line stably expressing muscarinic M(1)-type acetylcholine receptors. Stimulation of PI(4,5)P(2) hydrolysis or pharmacological inhibition of PI 4 kinase to block PI(4,5)P(2) synthesis potentiates TRPV3 currents by causing a negative shift in the voltage dependence of channel opening, increasing the proportion of voltage-independent current and causing thermal activation to occur at cooler temperatures. The activity of single TRPV3 channels in excised patches is potentiated by PI(4,5)P(2) depletion and selectively decreased by PI(4,5)P(2) compared with related phosphatidylinositol phosphates. Neutralizing mutations of basic residues in the TRP domain abrogate the effect of PI(4,5)P(2) on channel function, suggesting that PI(4,5)P(2) directly interacts with a specific protein motif to reduce TRPV3 channel open probability. PI(4,5)P(2)-dependent modulation of TRPV3 activity represents an attractive mechanism for acute regulation of keratinocyte signaling cascades that control cell proliferation and the release of autocrine and paracrine factors.

Pubmed ID: 21321070 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: T32 HL007572
  • Agency: PHS HHS, United States
    Id: HLO7572

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Origin (tool)

RRID:SCR_014212

Software application for data analysis and graphing. Origin contains a variety of different graph types, including statistical plots, 2D and 3D vector graphs, and counter graphs. More advance version is OriginPro which offers advanced analysis tools and Apps for Peak Fitting, Surface Fitting, Statistics and Signal Processing.

View all literature mentions