Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Detection of hepatocyte growth factor (HGF) ligand-c-MET receptor activation in formalin-fixed paraffin embedded specimens by a novel proximity assay.

PloS one | 2011

Aberrant activation of membrane receptors frequently occurs in human carcinomas. Detection of phosphorylated receptors is commonly used as an indicator of receptor activation in formalin-fixed paraffin embedded (FFPE) tumor specimens. FFPE is a standard method of specimen preparation used in the histological analysis of solid tumors. Due to variability in FFPE preparations and the labile nature of protein phosphorylation, measurements of phospho-proteins are unreliable and create ambiguities in clinical interpretation. Here, we describe an alternative, novel approach to measure receptor activation by detecting and quantifying ligand-receptor complexes in FFPE specimens. We used hepatocyte growth factor (HGF)-c-MET as our model ligand-receptor system. HGF is the only known ligand of the c-MET tyrosine kinase receptor and HGF binding triggers c-MET phosphorylation. Novel antibody proximity-based assays were developed and used to detect and quantify total c-MET, total HGF, and HGF-c-MET ligand-receptor interactions in FFPE cell line and tumor tissue. In glioma cells, autocrine activation of c-MET by HGF-c-MET increased basal levels of c-MET phosphorylation at tyrosine (Tyr) 1003. Furthermore, HGF-c-MET activation in glioma cell lines was verified by Surface Protein-Protein Interaction by Crosslinking ELISA (SPPICE) assay in corresponding soluble cell lysates. Finally, we profiled levels ofc-MET, HGF, and HGF-c-MET complexes in FFPE specimens of human Non-Small Cell Lung Cancer (NSCLC), Gastric Cancer, Head and Neck Squamous Cell, and Head and Neck Non-Squamous Cell carcinomas. This report describes a novel approach for the detection and quantification of ligand-receptor interactions that can be widely applied to measure receptor activation in FFPE preclinical models and archived FFPE human tissue specimens.

Pubmed ID: 21283737 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RayBiotech (tool)

RRID:SCR_005517

An Antibody supplier

View all literature mentions

MCF-7 (tool)

RRID:CVCL_0031

Cell line MCF-7 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

U-87MG ATCC (tool)

RRID:CVCL_0022

Cell line U-87MG ATCC is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

NCI-H226 (tool)

RRID:CVCL_1544

Cell line NCI-H226 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions