Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

K70Q adds high-level tenofovir resistance to "Q151M complex" HIV reverse transcriptase through the enhanced discrimination mechanism.

PloS one | 2011

HIV-1 carrying the "Q151M complex" reverse transcriptase (RT) mutations (A62V/V75I/F77L/F116Y/Q151M, or Q151Mc) is resistant to many FDA-approved nucleoside RT inhibitors (NRTIs), but has been considered susceptible to tenofovir disoproxil fumarate (TFV-DF or TDF). We have isolated from a TFV-DF-treated HIV patient a Q151Mc-containing clinical isolate with high phenotypic resistance to TFV-DF. Analysis of the genotypic and phenotypic testing over the course of this patient's therapy lead us to hypothesize that TFV-DF resistance emerged upon appearance of the previously unreported K70Q mutation in the Q151Mc background. Virological analysis showed that HIV with only K70Q was not significantly resistant to TFV-DF. However, addition of K70Q to the Q151Mc background significantly enhanced resistance to several approved NRTIs, and also resulted in high-level (10-fold) resistance to TFV-DF. Biochemical experiments established that the increased resistance to tenofovir is not the result of enhanced excision, as K70Q/Q151Mc RT exhibited diminished, rather than enhanced ATP-based primer unblocking activity. Pre-steady state kinetic analysis of the recombinant enzymes demonstrated that addition of the K70Q mutation selectively decreases the binding of tenofovir-diphosphate (TFV-DP), resulting in reduced incorporation of TFV into the nascent DNA chain. Molecular dynamics simulations suggest that changes in the hydrogen bonding pattern in the polymerase active site of K70Q/Q151Mc RT may contribute to the observed changes in binding and incorporation of TFV-DP. The novel pattern of TFV-resistance may help adjust therapeutic strategies for NRTI-experienced patients with multi-drug resistant (MDR) mutations.

Pubmed ID: 21249155 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: R01 AI074389
  • Agency: NIAID NIH HHS, United States
    Id: R21 AI079801
  • Agency: NIAID NIH HHS, United States
    Id: AI076119
  • Agency: NIAID NIH HHS, United States
    Id: R21 AI094715
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI076119
  • Agency: NIAID NIH HHS, United States
    Id: R33 AI079801
  • Agency: NIAID NIH HHS, United States
    Id: AI079801
  • Agency: NIAID NIH HHS, United States
    Id: AI094715
  • Agency: NIAID NIH HHS, United States
    Id: AI074389

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PyMOL (tool)

RRID:SCR_000305

A user-sponsored molecular visualization software system on an open-source foundation. The software has the capabilities to view, render, animate, export, present and develop three dimensional molecular structures.

View all literature mentions

Stanford University HIV Drug Resistance Database (tool)

RRID:SCR_006631

The Stanford University HIV Drug Resistance Database is a curated public database designed to represent, store, and analyze the different forms of data underlying HIVs drug resistance. HIVDB has three main types of content: (1) Database queries and references, (2) Interactive programs, and (3) Educational resources. Database queries are designed primarily for researchers studying HIV drug resistance. The interactive programs and educational resources are designed for both researchers and those wishing to learn more about HIV drug resistance. 1.DATABASE QUERY AND REFERENCE PAGES Genotype-Treatment Correlations This Genotype-Treatment section of the database links to 15 interactive query pages that explore the relationship between treatment with HIV-1 antiretroviral drugs (ARVs) and mutations in HIV reverse transcriptase (RT), protease, and integrase. There are five types of interactive query pages: Treatment Profiles (Protease and RT inhibitors) Mutation Profiles (Protease and RT mutations) Detailed Treatment Queries (Protease, RT, and integrase inhibitors) Detailed Mutation Queries (Protease, RT, and integrase mutations) Mutation Prevalence According to Subtype and Treatment Genotype-Phenotype Correlations The main page of the Genotype-Phenotype Correlations section links to four interactive query pages: three dynamically updated data summaries and one regularly updated downloadable dataset. Drug Resistance Positions Query for levels of resistance associated with known drug resistance mutations Detailed Phenotype Queries Queries for levels of resistance associated with individual mutations or mutation combinations at all positions of protease, RT, and integrase Patterns of Drug Resistance Mutations Downloadable Reference Dataset Genotype-Clinical Correlations This part of the database has two main sections: Clinical Trials Datasets Summaries of Clinical Studies References This part of the database has two main sections: one with summaries of the data from each of the references in HIVDB and one in which every primate immunodeficiency virus sequence in GenBank is annotated according to its presence or absence in HIVDB. Studies in HIVDB GenBank <=> HIVDB New Submissions Approximately every three months, the New Submissions section lists the studies that have been entered into HIVDB. The study title links to the introductory page of the study in the References section. Database Statistics (http://hivdb.stanford.edu/pages/HIVdbStatistics.html) 2. INTERACTIVE PROGRAMS HIVDB has seven main interactive programs. 1. HIVdb Program Mutation List Analysis Sequence Analysis HIVdb Output Sierra Web Service Release Notes Algorithm Specification Interface (ASI) 2. HIValg Program 3. HIVseq Program 4. Calibrated Population Resistance (CPR) tool 5. Mutation ARV Evidence Listing (MARVEL) 6. ART-AiDE 7. Rega HIV-1 Subtyping tool Three programs in the HIV Drug Resistance Database share a common code base: HIVseq, HIVdb, and HIValg. HIVseq accepts user-submitted protease, RT, and integrase sequences, compares them to the consensus subtype B reference sequence, and uses the differences as query parameters for interrogating the HIV Drug Resistance database (Shafer, D Jung, & B Betts, Nat Med 2000; Rhee SY et al. AIDS 2006). The query result provides users with the prevalence of protease, RT and integrase mutations according to subtype and PI, nucleoside RT inhibitor (NRTI), non-nucleoside RT inhibitor (NNRTI), and integrase inhibitor (INI) exposure. This allows users to detect unusual sequence results immediately so that the person doing the sequencing can check the primary sequence output while it is still on the desktop. In addition, unexpected associations between sequences or isolates can be discovered by immediately retrieving data on isolates sharing one or more mutations with the sequence. There are three ways in which the HIVdb program can be used: (i) entering a list of protease and RT mutations, (ii) entering a complete sequence containing protease, RT, and/or integrase, and (iii) using a Web Service. HIVdb is an expert system that accepts user-submitted HIV-1 pol sequences and returns inferred levels of resistance to 20 FDA-approved ARV drugs including 8 PIs, 7 NRTIs, 4 NNRTIs, and - with this update - one INI. In the HIVdb system, each HIV-1 drug resistance mutation is assigned a drug penalty score and a comment; the total score for a drug is derived by adding the scores of each mutation associated with resistance to that drug. Using the total drug score, the program reports one of the following levels of inferred drug resistance: susceptible, potential low-level resistance, low-level resistance, intermediate resistance, and high-level resistance. HIValg is designed for users interested in comparing the results of different algorithms or who are interested in comparing and evaluating existing and newly developed algorithms. The ability to develop new algorithms that can be run on the HIV Drug Resistance Database depends on the Algorithm Specific Interface (ASI) compiler (Shafer & Betts JCM 2003). Submission of Sequences and Mutations For each of the three programs, sequences can be entered using either the Sequence Analysis Form or the Mutation List form. 3. EDUCATIONAL RESOURCES HIVDB contains several regularly updated sections summarizing data linking RT, protease, and integrase mutations and antiretroviral drugs (ARVs). These sections include (i) tabular summaries of the major mutations associated with each ARV class, (ii) detailed summaries of the major, minor, and accessory mutations associated with each ARV, (iii) the comments used by the HIVdb program, (iv) the scores used by the HIVdb program, (v) clinical studies in which baseline drug resistance mutations have been correlated with the virological response (clinical outcome) to a specific ARV, (vi) mutations that can be used for drug resistance surveillance, and (vii) a two-page PDF handout. 1. Drug Resistance Summaries Tabular Drug Resistance Summaries by ARV Class Detailed Drug Resistance Summaries by ARV Drug Resistance Mutation Comments Used by the HIVdb Program Drug Resistance Mutation Scores Used by the HIVdb Program Genotype-Clinical Outcome Correlation Studies 2. Surveillance Drug-Resistance Mutation List Section 3. PDF Handout Grant Support 1. National Institute for Allergy and Infectious Diseases (NIAID, NIH): Online HIV Drug Resistance Database (PI: Robert W. Shafer, MD, 1R01AI68581-01A1), 04/01/06 - 3/31/11 2. National Institute for Allergy and Infectious Diseases (NIAID, NIH) supplement to the grant Identification of Multidrug-Resistant HIV-1 Isolates (PI: Robert W. Shafer, MD, AI46148-01): Supplement provided 1999-2005. 3. NIH/NIGMS Program Project on AIDS Structural Biology Program Project: Targeting Ensembles of Drug Resistant Protease Variants (PI: Celia Schiffer, PhD, University of Massachusetts): 2002-2007 4. University-wide AIDS Research Program (CR03-ST-524). Community collaborative award: Optimizing Clinical HIV Genotypic Resistance Interpretation: Principal Investigators: Robert W. Shafer, MD and W. Jeffrey Fessel MD (Kaiser Permanente Medical Care Program): 2004-2005 5. Stanford University Bio-X Interdisciplinary Initiative: HIV Gene Sequence Analysis for Drug Resistance Studies: A Pharmacogenetic Challenge Principal Investigators: Robert W. Shafer, MD and Daphne Koller, Ph.D. (Computer Science): 2000-2002

View all literature mentions

Japanese Ministry of Health Labor and Welfare (tool)

RRID:SCR_011326

Cabinet level ministry of the Japanese government. It is commonly known as Kōrō-shō in Japan. The ministry provides services on health, labour and welfare.

View all literature mentions

National Institutes of Health (tool)

RRID:SCR_011417

NIH is the nations medical research agency - making important medical discoveries that improve health and save lives. The National Institutes of Health (NIH), a part of the U.S. Department of Health and Human Services, is the primary Federal agency for conducting and supporting medical research. Helping to lead the way toward important medical discoveries that improve peoples health and save lives, NIH scientists investigate ways to prevent disease as well as the causes, treatments, and even cures for common and rare diseases. NIH research impacts: * child and teen health, * men's health, * minority health, * seniors' health, * women's health, and * wellness and lifestyle issues. Composed of 27 Institutes and Centers, the NIH provides leadership and financial support to researchers in every state and throughout the world.

View all literature mentions

HeLa (tool)

RRID:CVCL_0030

Cell line HeLa is a Cancer cell line with a species of origin Homo sapiens

View all literature mentions

COS-7 (tool)

RRID:CVCL_0224

Cell line COS-7 is a Transformed cell line with a species of origin Chlorocebus aethiops (Green monkey)

View all literature mentions