Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Both Schwann cell and axonal defects cause motor peripheral neuropathy in Ebf2-/- mice.

Neurobiology of disease | 2011

Charcot-Marie-Tooth neuropathies are frequent hereditary disorders of the nervous system and most cases remain without a molecular definition. Mutations in transcription factors have been previously associated to various types of this disease. Mice carrying a null mutation in Ebf2 transcription factor present peripheral nerve abnormalities. To get insight into Ebf2 function in peripheral nervous system, here we characterize the peripheral neuropathy affecting these mice. We first show that Ebf2 is largely expressed in peripheral nerve throughout postnatal development, its expression being not only restricted to non-myelin forming Schwann cells, but also involving myelin forming Schwann cells and the perineurium. As a consequence, the onset of myelination is delayed and Schwann cell differentiation markers are downregulated in Ebf2-/- mice. Later in development, myelin pathology appears less severe and characterized by isolated clusters of hypomyelinated fibers. However, we find defects in the nerve architecture, such as abnormalities of the nodal region and shorter internodal length. Furthermore, we demonstrate a significant decrease in axonal calibre, with a lack of large calibre axons, and a severe impairment of motor nerve conduction velocity and amplitude, whereas the sensory nerve parameters are less affected. Interestingly, a clinical case with peripheral motor neuropathy and clinical features similar to Ebf2-/- mice phenotype was associated with a deletion encompassing EBF2 human genomic locus. These findings demonstrate that Ebf2 is a new molecule implicated in peripheral nerve development and a potential candidate gene for peripheral nerve disorders.

Pubmed ID: 21220016 RIS Download

Associated grants

  • Agency: Telethon, Italy
    Id: GGP09134

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Neurolucida (tool)

RRID:SCR_001775

Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.

View all literature mentions

Kv1.1 potassium channel (antibody)

RRID:AB_10672854

This monoclonal targets Kv1.1 potassium channel

View all literature mentions

Anti-Kv1.1 K+ Channel Antibody (antibody)

RRID:AB_10673165

This monoclonal targets Kv1.1 K+ channel

View all literature mentions

Kv1.1 potassium channel (external) (antibody)

RRID:AB_10673166

This monoclonal targets Kv1.1 potassium channel (external)

View all literature mentions

Anti-Kv1.1 K+ Channel (External) Antibody (antibody)

RRID:AB_2128566

This monoclonal targets Kv1.1 K+ channel (external)

View all literature mentions