Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule.

Molecular biology of the cell | 2011

There has been much effort in recent years aimed at understanding the molecular mechanism by which the Dam1 kinetochore complex is able to couple microtubule depolymerization to poleward movement. Both a biased diffusion and a forced walk model have been proposed, and several key functional aspects of Dam1-microtubule binding are disputed. Here, we investigate the elements involved in tubulin-Dam1 complex interactions and directly visualize Dam1 rings on microtubules in order to infer their dynamic behavior on the microtubule lattice and its likely relevance at the kinetochore. We find that the Dam1 complex has a preference for native tubulin over tubulin that is lacking its acidic C-terminal tail. Statistical mechanical analysis of images of Dam1 rings on microtubules, applied to both the distance between rings and the tilt angle of the rings with respect to the microtubule axis, supports a diffusive ring model. We also present a cryo-EM reconstruction of the Dam1 ring, likely the relevant assembly form of the complex for energy coupling during microtubule depolymerization in budding yeast. The present studies constitute a significant step forward by linking structural and biochemical observations toward a comprehensive understanding of the Dam1 complex.

Pubmed ID: 21169562 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: 2P01GM51487C
  • Agency: NIGMS NIH HHS, United States
    Id: P01 GM051487
  • Agency: Howard Hughes Medical Institute, United States
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM047842
  • Agency: NIGMS NIH HHS, United States
    Id: R01GM47842

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Electron Microscopy Data Bank at PDBe (MSD-EBI) (tool)

RRID:SCR_006506

Repository for electron microscopy density maps of macromolecular complexes and subcellular structures at Protein Data Bank in Europe. Covers techniques, including single-particle analysis, electron tomography, and electron (2D) crystallography.

View all literature mentions