Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Identifying a high fraction of the human genome to be under selective constraint using GERP++.

PLoS computational biology | 2010

Computational efforts to identify functional elements within genomes leverage comparative sequence information by looking for regions that exhibit evidence of selective constraint. One way of detecting constrained elements is to follow a bottom-up approach by computing constraint scores for individual positions of a multiple alignment and then defining constrained elements as segments of contiguous, highly scoring nucleotide positions. Here we present GERP++, a new tool that uses maximum likelihood evolutionary rate estimation for position-specific scoring and, in contrast to previous bottom-up methods, a novel dynamic programming approach to subsequently define constrained elements. GERP++ evaluates a richer set of candidate element breakpoints and ranks them based on statistical significance, eliminating the need for biased heuristic extension techniques. Using GERP++ we identify over 1.3 million constrained elements spanning over 7% of the human genome. We predict a higher fraction than earlier estimates largely due to the annotation of longer constrained elements, which improves one to one correspondence between predicted elements with known functional sequences. GERP++ is an efficient and effective tool to provide both nucleotide- and element-level constraint scores within deep multiple sequence alignments.

Pubmed ID: 21152010 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NLM NIH HHS, United States
    Id: K22 LM008261
  • Agency: NLM NIH HHS, United States
    Id: T15 LM007033

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RepeatMasker (tool)

RRID:SCR_012954

Software tool that screens DNA sequences for interspersed repeats and low complexity DNA sequences. The output of the program is a detailed annotation of the repeats that are present in the query sequence as well as a modified version of the query sequence in which all the annotated repeats have been masked (default: replaced by Ns). Currently over 56% of human genomic sequence is identified and masked by the program. Sequence comparisons in RepeatMasker are performed by one of several popular search engines including nhmmer, cross_match, ABBlast/WUBlast, RMBlast and Decypher. RepeatMasker makes use of curated libraries of repeats and currently supports Dfam ( profile HMM library ) and RepBase ( consensus sequence library ).

View all literature mentions

Conservation (tool)

RRID:SCR_016064

Software for scoring protein sequence conservation using the Jensen-Shannon divergence. It can be used to predict catalytic sites and residues near bound ligands.

View all literature mentions