Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation.

BACKGROUND: Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. RESULTS: We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. CONCLUSIONS: We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.

Pubmed ID: 21108829


  • Leadsham JE
  • Gourlay CW


BMC cell biology

Publication Data

December 15, 2010

Associated Grants

  • Agency: Medical Research Council, Id: G0600085
  • Agency: Medical Research Council, Id:

Mesh Terms

  • Apoptosis
  • CCAAT-Binding Factor
  • Catalytic Domain
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinase Catalytic Subunits
  • Cyclic AMP-Dependent Protein Kinases
  • Gene Expression Regulation, Fungal
  • Membrane Proteins
  • Mitochondria
  • Mitochondrial Proteins
  • Reactive Oxygen Species
  • Repressor Proteins
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Signal Transduction
  • Transcription Factors