Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics.

NeuroImage | 2011

The brain's energy economy excessively favors intrinsic, spontaneous neural activity over extrinsic, evoked activity, presumably to maintain its internal organization. Emerging hypotheses capable of explaining such an investment posit that the brain's intrinsic functional architecture encodes a blueprint for its repertoire of responses to the external world. Yet, there is little evidence directly linking intrinsic and extrinsic activity in the brain. Here we relate differences among individuals in the magnitude of task-evoked activity during performance of an Eriksen flanker task, to spontaneous oscillatory phenomena observed during rest. Specifically, we focused on the amplitude of low-frequency oscillations (LFO, 0.01-0.1 Hz) present in the BOLD signal. LFO amplitude measures obtained during rest successfully predicted the magnitude of task-evoked activity in a variety of regions that were all activated during performance of the flanker task. In these regions, higher LFO amplitude at rest predicted higher task-evoked activity. LFO amplitude measures obtained during rest were also found to have robust predictive value for behavior. In midline cingulate regions, LFO amplitudes predicted not only the speed and consistency of performance but also the magnitude of the behavioral congruency effect embedded in the flanker task. These results support the emerging hypothesis that the brain's repertoire of responses to the external world are represented and updated in the brain's intrinsic functional architecture.

Pubmed ID: 20974260 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: K23MH087770
  • Agency: NIMH NIH HHS, United States
    Id: K23 MH087770-02
  • Agency: NIMH NIH HHS, United States
    Id: R01MH083246
  • Agency: NIMH NIH HHS, United States
    Id: K23 MH087770
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH083246
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH083246-03

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Analysis of Functional NeuroImages (tool)

RRID:SCR_005927

Set of (mostly) C programs that run on X11+Unix-based platforms (Linux, Mac OS X, Solaris, etc.) for processing, analyzing, and displaying functional MRI (FMRI) data defined over 3D volumes and over 2D cortical surface meshes. AFNI is freely distributed as source code plus some precompiled binaries.

View all literature mentions

Oxford Centre for Functional MRI of the Brain (tool)

RRID:SCR_005283

The FMRIB Centre is a multi-disciplinary neuroimaging research facility, which focuses on the use of Magnetic Resonance Imaging (MRI) for neuroscience research, along with related technologies such as Transcranial Magnetic Stimulation, transcranial Direct Cortical Stimulation and EEG. FMRIB is composed of research groups in all aspects of brain imaging research, including physics, analysis, basic science and clinical neuroscience. We were recently awarded 8 million pounds by the MRC, EPSRC, Wolfson Foundation and University of Oxford to purchase and install new 7T and 3T leading-edge MRI systems to enable us to image brain structure and function at even higher resolution than currently possible.

View all literature mentions