Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The C-terminal domain of ßIV-spectrin is crucial for KCNQ2 aggregation and excitability at nodes of Ranvier.

The Journal of physiology | 2010

The spectrin cytoskeleton has an important function in the targeting of proteins to excitable membrane domains. In axons, βIV-spectrin stabilizes voltage-gated sodium (Nav) channel clusters at nodes of Ranvier and axon initial segments, two regions crucial for the generation and conduction of action potentials. Here, I investigated the physiology of the neuromuscular junction and peripheral nerves in quivering-3J mice, which show a frame-shift base insertion in the Spnb4 gene and lack the C-terminus of βIV-spectrin. The quivering-3J mice show prominent spontaneous and evoked hyperactivities at diaphragm neuromuscular junctions. These neuromyotonic and myokymic discharges were more prominent in adult animals when tremors and ataxia were pronounced. Recordings of sciatic and phrenic nerves showed that the hyperactivities originate in myelinated axons distally from nerve terminals. Axon and myelin structure in the PNS were unaffected in quivering-3J mice. Of interest, KCNQ2 subunit aggregates were undetectable at PNS and CNS nodes, whereas Nav and Kv1.1/Kv1.2 channels were properly concentrated at nodal and juxtaparanodal regions, respectively. The protein level of KCNQ2 subunits was normal in mutant animals, suggesting that KCNQ2 subunit absence stems from clustering or trafficking defects in axons. The quivering-3J nodes also presented high densities of ankyrin-G and CK2α, two cytosolic molecules involved with aggregating Nav and KCNQ2/3 channels in axons. Because βIV-spectrin does not interact with KCNQ2/3 subunits, it is suspected that βIV-spectrin regulates the distribution of KCNQ2/3 subunits in axonal subdomains via regulatory partners. Retigabine, an activator of KCNQ2/3 channels, attenuated the repetitive activities in quivering-3J mice, suggesting that depletion of KCNQ2 subunits at nodes initiates neuromyotonic/myokymic discharges. These findings demonstrate that spectrin cytoskeleton finely regulates ion channel distribution and implicates KCNQ2/3 subunits in axonal excitability and in myokymia aetiology.

Pubmed ID: 20962009 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: P01 CA095616
  • Agency: NINDS NIH HHS, United States
    Id: U24 NS050606
  • Agency: NINDS NIH HHS, United States
    Id: U24NS050606

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NeuroMab (tool)

RRID:SCR_003086

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

View all literature mentions

pClamp (tool)

RRID:SCR_011323

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

View all literature mentions

Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_10674277

This monoclonal targets Kv1.2 potassium channel

View all literature mentions

Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_2296313

This monoclonal targets Kv1.2 K+ channel

View all literature mentions