Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

TOPSAN: use of a collaborative environment for annotating, analyzing and disseminating data on JCSG and PSI structures.

Acta crystallographica. Section F, Structural biology and crystallization communications | 2010

The NIH Protein Structure Initiative centers, such as the Joint Center for Structural Genomics (JCSG), have developed highly efficient technological platforms that are capable of experimentally determining the three-dimensional structures of hundreds of proteins per year. However, the overwhelming majority of the almost 5000 protein structures determined by these centers have yet to be described in the peer-reviewed literature. In a high-throughput structural genomics environment, the process of structure determination occurs independently of any associated experimental characterization of function, which creates a challenge for the annotation and analysis of structures and the publication of these results. This challenge has been addressed by developing TOPSAN (`The Open Protein Structure Annotation Network'), which enables the generation of knowledge via collaborations among globally distributed contributors supported by automated amalgamation of available information. TOPSAN currently provides annotations for all protein structures determined by the JCSG in addition to preliminary annotations on a large number of structures from the other PSI production centers. TOPSAN-enabled collaborations have resulted in insightful structure-function analysis for many proteins and have led to numerous peer-reviewed publications, as exemplified by the articles included in this issue of Acta Crystallographica Section F.

Pubmed ID: 20944203 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: U54 GM074898

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Institute of General Medical Sciences: Research Funding (tool)

RRID:SCR_003096

NIGMS places great emphasis on the support of individual, investigator-initiated grants within its scientific mission areas. Most grants are for research projects (R01), but NIGMS also funds program projects (P01) as well as some research resources. The Institute encourages research in certain scientific areas through requests for applications and program announcements. This website has information for upcoming grants, minority grants as well as training opportunities in medical research in the following disciplines: cell biology, biophysics, genetics, developmental biology, pharmacology, physiology, biological chemistry, bioinformatics, and computational biology.

View all literature mentions

Mindtouch DekiWiki (tool)

RRID:SCR_003425

A web based social authoring and publishing environment that adheres to open standards and RESTful design principals. It provides wiki-like ease of use with a sophisticated web services framework for rapid application development, creating flexible workflows and rapid integration. MindTouch creates a vibrant real-time information fabric by federating content from across enterprise silos, such as CRM, ERP, file servers, email, databases, web services and more.

View all literature mentions

Pfam (tool)

RRID:SCR_004726

A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).

View all literature mentions

Joint Center for Structural Genomics (tool)

RRID:SCR_008251

The JCSG is a multi-institutional consortium that aims to explore the expanding protein universe to find new challenges and opportunities to significantly contribute to new biology, chemistry and medicine through development of HT approaches to structural genomics. The mission of JCSG is to to operate a robust HT protein structure determination pipeline as a large-scale production center for PSI-2. A major goal is to ensure that innovative high-throughput approaches are developed that advance not only structural genomics, but also structural biology in general, via investigation of large numbers of high-value structures that populate protein fold and family space and by increasing the efficiency of structure determination at substantially reduced cost. The JCSG centralizes each core activity into single dedicated sites, each handling distinct, but interconnected objectives. This unique approach allows each specialized group to focus on its own area of expertise and provides well-defined interfaces among the groups. In addition, this approach addresses the requirements for the scalability needed to process large numbers of targets at a greatly reduced cost per target. JCSG production groups are: - Administrative Core - Bioinformatics Core - Crystallomics Core - Structure Determination Core - NMR Core JCSG is deeply committed to the development of new technologies that facilitate high throughput structural genomics. The areas of development include hardware, software, new experimental methods, and adaptation of existing technologies to advance genome research. In the hardware arena, their commitment is to the development of technologies that accelerate structure solution by increasing throughput rates at every stage of the production pipeline. Therefore, one major area of hardware development has been the implementation of robotics. In the software arena, they have developed enterprise resource software that track success, failures, and sample histories from target selection to PDB deposition, annotation and target management tools, and helper applications aimed at facilitating and automating multiple steps in the pipeline. Sponsors: The Joint Center for Structural Genomics is funded by the National Institute of General Medical Sciences (NIGMS), as part of the second phase of the Protein Structure Initiative (PSI) of the National Institutes of Health (U54 GM074898).

View all literature mentions