• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Osteopontin and protein kinase C regulate PDLIM2 activation and STAT1 ubiquitination in LPS-treated murine macrophages.

The molecular pathways regulating signal transducer and activator of transcription 1 (STAT1) levels in states of inflammation are incompletely understood. The suppressor of cytokine signaling, protein inhibitor of STAT, and SHP-1/2 tyrosine phosphatases ultimately regulate activity of STAT molecules. However, these mechanisms do not degrade STAT proteins. In this regard, using a murine macrophage model of LPS stimulation, we previously demonstrated that osteopontin (OPN) increased STAT1 ubiquitination and 26 S proteasome degradation via the ubiquitin E3 ligase, PDLIM2. In this study, we further characterize OPN-dependent activation of PDLIM2 in a model of LPS-stimulated RAW264.7 murine macrophages. We identify serine 137 as a protein kinase C-phosphorylation site in PDLIM2 that is required for ubiquitination of STAT1. PDLIM2 phosphorylation requires OPN expression. Using phospho-mutants and phospho-mimetic constructs of PDLIM2, our in vivo and in vitro ubiquitination studies confirm the role of PDLIM2 in formation and degradation of Ub-STAT1. The functional consequences of PDLIM2-mediated STAT1 degradation were confirmed using an IFN-γ-regulated transcription factor STAT1α reporter construct and chromatin immunoprecipitation assay for the inducible nitric-oxide synthase promoter. In a murine cecal ligation and puncture model of sepsis in wild-type and OPN (-/-) animals, OPN was necessary for PDLIM2 serine phosphorylation and STAT1 ubiquitination in bone marrow macrophages. We conclude that OPN and PDLIM2 are important regulators of STAT1-mediated inflammatory responses.

Pubmed ID: 20889505