Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Delayed appearance of the scaffolding proteins PSD-95 and Homer-1 at the developing rat calyx of Held synapse.

The Journal of comparative neurology | 2010

The calyx of Held synapse is a giant axosomatic synapse that acts as a fast relay in the sound localization circuit of the brainstem. In rodents it forms within a relatively brief period starting around the second postnatal day (P2). The relative timing of the formation of its pre- and the postsynaptic compartment are not yet known. By means of fluorescent immunohistochemistry in neonatal rats we therefore compared the developmental expression patterns of the vesicular glutamate transporter (VGLUT)-1 and the postsynaptic density scaffolding proteins Homer-1 and PSD-95 in the medial nucleus of the trapezoid body (MNTB). Before its formation, colocalized punctate staining of VGLUT-1 and Homer-1 or PSD-95 was observed on principal neurons, in agreement with earlier work showing that they are already innervated by fibers from the cochlear nucleus before the calyx forms. The expression of VGLUT-1 clusters within the nascent calyx of Held synapse preceded the expression of Homer-1 and PSD-95 clusters, as indicated by the presence of principal neurons with only a large contiguous cluster (LCC) of VGLUT-1 at P2-3, whereas no neurons with only an LCC for Homer-1 or PSD-95 were seen. At P3 the first principal neurons with both a pre- and a postsynaptic LCC were observed, and at P12 all principal neurons had both a pre- and a postsynaptic LCC. The relatively late appearance of Homer-1 and PSD-95 within the developing calyx of Held synapse suggests that they play a role in its stabilization and the recruitment of additional receptors to its postsynaptic density.

Pubmed ID: 20886623 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.