• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Inhaled anesthetic responses of recombinant receptors and knockin mice harboring α2(S270H/L277A) GABA(A) receptor subunits that are resistant to isoflurane.

The mechanism by which the inhaled anesthetic isoflurane produces amnesia and immobility is not understood. Isoflurane modulates GABA(A) receptors (GABA(A)-Rs) in a manner that makes them plausible targets. We asked whether GABA(A)-R α2 subunits contribute to a site of anesthetic action in vivo. Previous studies demonstrated that Ser270 in the second transmembrane domain is involved in the modulation of GABA(A)-Rs by volatile anesthetics and alcohol, either as a binding site or a critical allosteric residue. We engineered GABA(A)-Rs with two mutations in the α2 subunit, changing Ser270 to His and Leu277 to Ala. Recombinant receptors with these mutations demonstrated normal affinity for GABA, but substantially reduced responses to isoflurane. We then produced mutant (knockin) mice in which this mutated subunit replaced the wild-type α2 subunit. The adult mutant mice were overtly normal, although there was evidence of enhanced neonatal mortality and fear conditioning. Electrophysiological recordings from dentate granule neurons in brain slices confirmed the decreased actions of isoflurane on mutant receptors contributing to inhibitory synaptic currents. The loss of righting reflex EC(50) for isoflurane did not differ between genotypes, but time to regain the righting reflex was increased in N(2) generation knockins. This effect was not observed at the N(4) generation. Isoflurane produced immobility (as measured by tail clamp) and amnesia (as measured by fear conditioning) in both wild-type and mutant mice, and potencies (EC(50)) did not differ between the strains for these actions of isoflurane. Thus, immobility or amnesia does not require isoflurane potentiation of the α2 subunit.

Pubmed ID: 20807777


  • Werner DF
  • Swihart A
  • Rau V
  • Jia F
  • Borghese CM
  • McCracken ML
  • Iyer S
  • Fanselow MS
  • Oh I
  • Sonner JM
  • Eger EI
  • Harrison NL
  • Harris RA
  • Homanics GE


The Journal of pharmacology and experimental therapeutics

Publication Data

January 16, 2011

Associated Grants

  • Agency: NIAAA NIH HHS, Id: AA06399
  • Agency: NIAAA NIH HHS, Id: AA10422
  • Agency: NIAAA NIH HHS, Id: AA16046
  • Agency: NIGMS NIH HHS, Id: GM47818
  • Agency: NIGMS NIH HHS, Id: P01 GM047818
  • Agency: NIAAA NIH HHS, Id: R01 AA006399
  • Agency: NIAAA NIH HHS, Id: R37 AA010422

Mesh Terms

  • Anesthetics, Inhalation
  • Animals
  • Conditioning (Psychology)
  • Drug Resistance
  • Fear
  • Female
  • Gene Knock-In Techniques
  • Humans
  • Isoflurane
  • Mice
  • Mice, Inbred C57BL
  • Rats
  • Receptors, GABA-A
  • Recombinant Proteins
  • Xenopus laevis
  • gamma-Aminobutyric Acid