Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.

PloS one | Aug 12, 2010

The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing, chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different cellular processes and genome-wide transcriptional misregulation in htz1Delta can be partially or totally suppressed if SWR1 is not formed (swr1Delta), if it forms but cannot bind to chromatin (swc2Delta) or if it binds to chromatin but lacks histone replacement activity (swc5Delta and the ATPase-dead swr1-K727G). These results suggest that in htz1Delta the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show that in htz1Delta, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1 complex impairs the repair of spontaneous DNA damage in htz1Delta. In addition, SWR1 causes DSBs sensitivity in htz1Delta; consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type (MAT) locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also to prevent the deleterious consequences of an incomplete nucleosome remodelling.

Pubmed ID: 20711347 RIS Download

Mesh terms: Adenosine Triphosphatases | Chromatin | DNA Breaks, Double-Stranded | Genome, Fungal | Genomic Instability | Histones | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins | Stress, Physiological | Transcription, Genetic

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Bioconductor

A catalog of tools and software packages for the analysis and comprehension of high-throughput genomic data that uses the R statistical programming language. Bioconductor has a development version to which new features and packages are added prior to incorporation in the release. A large number of meta-data packages provide pathway, organism, microarray and other annotations. The broad goals of the Bioconductor project are: to provide widespread access to a broad range of powerful statistical and graphical methods for the analysis of genomic data; to facilitate the inclusion of biological metadata in the analysis of genomic data; to provide a common software platform that enables the rapid development and deployment of extensible, scalable, and interoperable software; and to train researchers on computational and statistical methods for the analysis of genomic data.

tool

View all literature mentions

Gene Expression Omnibus

A public functional genomics data repository supporting MIAME-compliant data submissions. Tools are provided to help users query and download experiments and curated gene expression profiles. These data include microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted.

tool

View all literature mentions

Affymetrix

An Instrument manufacture,

tool

View all literature mentions