Our hosting provider will be undergoing maintenance on Tuesday, August 30 between 8am and 5pm PDT. SciCrunch services may be offline during the maintenance.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome.

CXCR4 is a G protein-coupled chemokine receptor that has been implicated in the pathogenesis of primary immunodeficiency disorders and cancer. Autosomal dominant gain-of-function truncations of CXCR4 are associated with warts, hypo-gammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a primary immunodeficiency disorder characterized by neutropenia and recurrent infections. Recent progress has implicated CXCR4-SDF1 (stromal cell-derived factor 1) signaling in regulating neutrophil homeostasis, but the precise role of CXCR4-SDF1 interactions in regulating neutrophil motility in vivo is not known. Here, we use the optical transparency of zebrafish to visualize neutrophil trafficking in vivo in a zebrafish model of WHIM syndrome. We demonstrate that expression of WHIM mutations in zebrafish neutrophils induces neutrophil retention in hematopoietic tissue, impairing neutrophil motility and wound recruitment. The neutrophil retention signal induced by WHIM truncation mutations is SDF1 dependent, because depletion of SDF1 with the use of morpholino oligonucleotides restores neutrophil chemotaxis to wounds. Moreover, localized activation of a genetically encoded, photoactivatable Rac guanosine triphosphatase is sufficient to direct migration of neutrophils that express the WHIM mutation. The findings suggest that this transgenic zebrafish model of WHIM syndrome may provide a valuable tool to screen for agents that modify CXCR4-SDF1 retention signals.

Pubmed ID: 20592249


  • Walters KB
  • Green JM
  • Surfus JC
  • Yoo SK
  • Huttenlocher A



Publication Data

October 14, 2010

Associated Grants

  • Agency: NIGMS NIH HHS, Id: GM074827

Mesh Terms

  • Agammaglobulinemia
  • Amino Acid Sequence
  • Animals
  • Animals, Genetically Modified
  • Cell Movement
  • Chemokine CXCL12
  • Chemotaxis, Leukocyte
  • Disease Models, Animal
  • Gene Expression
  • Hematopoiesis
  • Humans
  • Immunologic Deficiency Syndromes
  • Molecular Sequence Data
  • Mutation
  • Neutropenia
  • Neutrophils
  • Receptors, CXCR4
  • Signal Transduction
  • Syndrome
  • Zebrafish
  • Zebrafish Proteins