Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

γ-secretase-dependent cleavage initiates notch signaling from the plasma membrane.

Notch signaling is critical to animal development, and its dysregulation leads to human maladies ranging from birth defects to cancer. Although endocytosis is currently thought to promote signal activation by delivering activated Notch to endosome-localized gamma-secretase, the data are controversial and the mechanisms that control Notch endocytosis remain poorly defined. Here, we investigated the relationship between Notch internalization and signaling. siRNA-mediated depletion studies reveal that Notch endocytosis is clathrin-dependent and requires epsin1, the adaptor protein complex (AP2) and Nedd4. Moreover, we show that epsin1 interaction with Notch is ubiquitin-dependent. Contrary to the current model, we show that internalization defects lead to elevated gamma-secretase-mediated Notch processing and downstream signaling. These results indicate that signal activation occurs independently of Notch endocytosis and that gamma-secretase cleaves Notch at the plasma membrane. These observations support a model where endocytosis serves to downregulate Notch in signal-receiving cells.

Pubmed ID: 20573067 RIS Download

Mesh terms: Adaptor Proteins, Vesicular Transport | Amyloid Precursor Protein Secretases | Cell Membrane | Endosomal Sorting Complexes Required for Transport | Endosomes | HeLa Cells | Humans | Receptors, Notch | Signal Transduction | Ubiquitin | Ubiquitin-Protein Ligases

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.