• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Two Nedd4-binding motifs underlie modulation of sodium channel Nav1.6 by p38 MAPK.

Sodium channel Na(v)1.6 is essential for neuronal excitability in central and peripheral nervous systems. Loss-of-function mutations in Na(v)1.6 underlie motor disorders, with homozygous-null mutations causing juvenile lethality. Phosphorylation of Na(v)1.6 by the stress-induced p38 MAPK at a Pro-Gly-Ser(553)-Pro motif in its intracellular loop L1 reduces Na(v)1.6 current density in a dorsal root ganglion-derived cell line, without changing its gating properties. Phosphorylated Pro-Gly-Ser(553)-Pro motif is a putative binding site to Nedd4 ubiquitin ligases, and we hypothesized that Nedd4-like ubiquitin ligases may contribute to channel ubiquitination and internalization. We report here that p38 activation in hippocampal neurons from wild-type mice, but not from Scn8a(medtg) mice that lack Na(v)1.6, reduces tetrodotoxin-S sodium currents, suggesting isoform-specific modulation of Na(v)1.6 by p38 in these neurons. Pharmacological block of endocytosis completely abolishes p38-mediated Na(v)1.6 current reduction, supporting our hypothesis that channel internalization underlies current reduction. We also report that the ubiquitin ligase Nedd4-2 interacts with Na(v)1.6 via a Pro-Ser-Tyr(1945) motif in the C terminus of the channel and reduces Na(v)1.6 current density, and we show that this regulation requires both the Pro-Gly-Ser-Pro motif in L1 and the Pro-Ser-Tyr motif in the C terminus. Similarly, both motifs are necessary for p38-mediated reduction of Na(v)1.6 current, whereas abrogating binding of the ubiquitin ligase Nedd4-2 to the Pro-Ser-Tyr motif results in stress-mediated increase in Na(v)1.6 current density. Thus, phosphorylation of the Pro-Gly-Ser-Pro motif within L1 of Na(v)1.6 is necessary for stress-induced current modulation, with positive or negative regulation depending upon the availability of the C-terminal Pro-Ser-Tyr motif to bind Nedd4-2.

Pubmed ID: 20530479