Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

GSA-SNP: a general approach for gene set analysis of polymorphisms.

Nucleic acids research | Jul 25, 2010

Genome-wide association (GWA) study aims to identify the genetic factors associated with the traits of interest. However, the power of GWA analysis has been seriously limited by the enormous number of markers tested. Recently, the gene set analysis (GSA) methods were introduced to GWA studies to address the association of gene sets that share common biological functions. GSA considerably increased the power of association analysis and successfully identified coordinated association patterns of gene sets. There have been several approaches in this direction with some limitations. Here, we present a general approach for GSA in GWA analysis and a stand-alone software GSA-SNP that implements three widely used GSA methods. GSA-SNP provides a fast computation and an easy-to-use interface. The software and test datasets are freely available at http://gsa.muldas.org. We provide an exemplary analysis on adult heights in a Korean population.

Pubmed ID: 20501604 RIS Download

Mesh terms: Adult | Body Height | Genome-Wide Association Study | Humans | Internet | Polymorphism, Single Nucleotide | Software | User-Computer Interface

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


International HapMap Project

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A multi-country collaboration among scientists and funding agencies to develop a public resource where genetic similarities and differences in human beings are identified and catalogued. Using this information, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. All of the information generated by the Project will be released into the public domain. Their goal is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. HapMap project related data, software, and documentation include: bulk data on genotypes, frequencies, LD data, phasing data, allocated SNPs, recombination rates and hotspots, SNP assays, Perlegen amplicons, raw data, inferred genotypes, and mitochondrial and chrY haplogroups; Generic Genome Browser software; protocols and information on assay design, genotyping and other protocols used in the project; and documentation of samples/individuals and the XML format used in the project.

tool

View all literature mentions