Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2010

Whole-cell recordings were obtained from tyrosine hydroxylase-expressing (TH(+)) neurons in striatal slices from bacterial artificial chromosome transgenic mice that synthesize enhanced green fluorescent protein (EGFP) selectively in neurons expressing TH transcriptional regulatory sequences. Stereological cell counting indicated that there were approximately 2700 EGFP-TH(+) neurons/striatum. Whole-cell recordings in striatal slices demonstrated that EGFP-TH(+) neurons comprise four electrophysiologically distinct neuron types whose electrophysiological properties have not been reported previously in striatum. EGFP-TH(+) neurons were identified in retrograde tracing studies as interneurons. Recordings from synaptically connected pairs of EGFP-TH(+) interneurons and spiny neurons showed that the interneurons elicited GABAergic IPSPs/IPSCs in spiny neurons powerful enough to significantly delay evoked spiking. EGFP-TH(+) interneurons responded to local or cortical stimulation with glutamatergic EPSPs. Local stimulation also elicited GABA(A) IPSPs, at least some of which arose from identified spiny neurons. Single-cell reverse transcription-PCR showed expression of VMAT1 in EGFP-TH(+) interneurons, consistent with previous suggestions that these interneurons may be dopaminergic as well as GABAergic. All four classes of interneurons were medium sized with modestly branching, varicose dendrites, and dense, highly varicose axon collateral fields. These data show for the first time that there exists in the normal rodent striatum a substantial population of TH(+)/GABAergic interneurons comprising four electrophysiologically distinct subtypes whose electrophysiological properties differ significantly from those of previously described striatal GABAergic interneurons. These interneurons are likely to play an important role in striatal function through fast GABAergic synaptic transmission in addition to, and independent of, their potential role in compensation for dopamine loss in experimental or idiopathic Parkinson's disease.

Pubmed ID: 20484642 RIS Download

Additional research tools detected in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R56 NS034865
  • Agency: NINDS NIH HHS, United States
    Id: NS034865
  • Agency: NINDS NIH HHS, United States
    Id: NS052370
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS034865
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS052370

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Calretinin (antibody)

RRID:AB_2068506

This polyclonal targets Calretinin

View all literature mentions

Anti-Tyrosine Hydroxylase Antibody (antibody)

RRID:AB_390204

This polyclonal targets Tyrosine Hydroxylase

View all literature mentions

Anti-Tyrosine Hydroxylase Antibody (antibody)

RRID:AB_390204

This polyclonal targets Tyrosine Hydroxylase

View all literature mentions

Anti-Calretinin (antibody)

RRID:AB_2068506

This polyclonal targets Calretinin

View all literature mentions