Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Roles of A-type potassium currents in tuning spike frequency and integrating synaptic transmission in noradrenergic neurons of the A7 catecholamine cell group in rats.

Neuroscience | Jul 14, 2010

We investigated voltage-dependent K(+) currents (I(K)) in noradrenergic (NAergic) A7 neurons. The I(K) evoked consisted of A-type I(K) (I(A)), which had the characteristics of a low threshold for activation (approximately -50 mV), fast activation/inactivation, and rapid recovery from inactivation. Since the I(A) were blocked by heteropodatoxin-2 (Hptx-2), a specific Kv4 channel blocker, and the NAergic A7 neurons were shown to be reactive with antibodies against Kv4.1/Kv4.3 channel proteins, we conclude that the I(A) evoked in NAergic neurons are mediated by Kv4.1/Kv4.3 channels. I(A) were also evoked using voltage commands of a single action potential (AP), a subthreshold voltage change between two consecutive APs, or excitatory postsynaptic potential (EPSP) activity recorded in current-clamp mode (CCM). Blockade of the I(A) by 4-AP, a broad spectrum I(A) blocker, or by Hptx-2 increased the half-width and spontaneous firing of APs and reduced the amount of synaptic drive needed to elicit APs in CCM, showing that the I(A) play important roles in regulating the shape and firing frequency of APs and in synaptic integration in NAergic A7 neurons. Since these neurons are the principal projection neurons to the dorsal horn of the spinal cord, these results also suggest roles for Kv4.1/4.3 channels in descending NAergic pain regulation.

Pubmed ID: 20381592 RIS Download

Mesh terms: Action Potentials | Animals | Brain Stem | Dopamine beta-Hydroxylase | Female | In Vitro Techniques | Male | Neurons | Norepinephrine | Patch-Clamp Techniques | Potassium Channels | Rats | Rats, Sprague-Dawley | Shal Potassium Channels | Synaptic Transmission

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.