Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A genomic-based approach identifies FXYD domain containing ion transport regulator 2 (FXYD2)gammaa as a pancreatic beta cell-specific biomarker.

Diabetologia | Jul 27, 2010

AIMS/HYPOTHESIS: Non-invasive imaging of the pancreatic beta cell mass (BCM) requires the identification of novel and specific beta cell biomarkers. We have developed a systems biology approach to the identification of promising beta cell markers. METHODS: We followed a functional genomics strategy based on massive parallel signal sequencing (MPSS) and microarray data obtained in human islets, purified primary rat beta cells, non-beta cells and INS-1E cells to identify promising beta cell markers. Candidate biomarkers were validated and screened using established human and macaque (Macacus cynomolgus) tissue microarrays. RESULTS: After a series of filtering steps, 12 beta cell-specific membrane proteins were identified. For four of the proteins we selected or produced antibodies targeting specifically the human proteins and their splice variants; all four candidates were confirmed as islet-specific in human pancreas. Two splice variants of FXYD domain containing ion transport regulator 2 (FXYD2), a regulating subunit of the Na(+)-K(+)-ATPase, were identified as preferentially present in human pancreatic islets. The presence of FXYD2gammaa was restricted to pancreatic islets and selectively detected in pancreatic beta cells. Analysis of human fetal pancreas samples showed the presence of FXYD2gammaa at an early stage (15 weeks). Histological examination of pancreatic sections from individuals with type 1 diabetes or sections from pancreases of streptozotocin-treated Macacus cynomolgus monkeys indicated a close correlation between loss of FXYD2gammaa and loss of insulin-positive cells. CONCLUSIONS/INTERPRETATION: We propose human FXYD2gammaa as a novel beta cell-specific biomarker.

Pubmed ID: 20379810 RIS Download

Mesh terms: Animals | Biomarkers | Blotting, Western | Diabetes Mellitus, Type 1 | Genomics | Humans | Immunohistochemistry | In Vitro Techniques | Insulin-Secreting Cells | Islets of Langerhans | Macaca | Sodium-Potassium-Exchanging ATPase | Tissue Array Analysis

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NOTE: In October 2016, T1DBase has merged with its sister site ImmunoBase ( Database focused on the genetics and genomics of type 1 diabetes susceptibility providing a curated and integrated set of datasets and tools, across multiple species, to support and promote research in this area. The current data scope includes annotated genomic sequences for suspected T1D susceptibility regions; genetic data; microarray data; and global datasets, generally from the literature, that are useful for genetics and systems biology studies. The site also includes software tools for analyzing the data.


View all literature mentions