• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis.

Within the circulatory system, blood flow regulates vascular remodelling, stimulates blood stem cell formation, and has a role in the pathology of vascular disease. During vertebrate embryogenesis, vascular patterning is initially guided by conserved genetic pathways that act before circulation. Subsequently, endothelial cells must incorporate the mechanosensory stimulus of blood flow with these early signals to shape the embryonic vascular system. However, few details are known about how these signals are integrated during development. To investigate this process, we focused on the aortic arch (AA) blood vessels, which are known to remodel in response to blood flow. By using two-photon imaging of live zebrafish embryos, we observe that flow is essential for angiogenesis during AA development. We further find that angiogenic sprouting of AA vessels requires a flow-induced genetic pathway in which the mechano-sensitive zinc finger transcription factor klf2a induces expression of an endothelial-specific microRNA, mir-126, to activate Vegf signalling. Taken together, our work describes a novel genetic mechanism in which a microRNA facilitates integration of a physiological stimulus with growth factor signalling in endothelial cells to guide angiogenesis.

Pubmed ID: 20364122

Authors

  • Nicoli S
  • Standley C
  • Walker P
  • Hurlstone A
  • Fogarty KE
  • Lawson ND

Journal

Nature

Publication Data

April 22, 2010

Associated Grants

  • Agency: NIDDK NIH HHS, Id: DK32520
  • Agency: NCI NIH HHS, Id: R01 CA107454
  • Agency: NCI NIH HHS, Id: R01 CA107454-05
  • Agency: NHLBI NIH HHS, Id: R01 HL079266
  • Agency: NHLBI NIH HHS, Id: R01 HL079266-05

Mesh Terms

  • Animals
  • Aorta, Thoracic
  • Endothelial Cells
  • Gene Expression Regulation, Developmental
  • Hemodynamics
  • Intracellular Signaling Peptides and Proteins
  • Kruppel-Like Transcription Factors
  • Membrane Proteins
  • Mice
  • MicroRNAs
  • NIH 3T3 Cells
  • Neovascularization, Physiologic
  • Regional Blood Flow
  • Signal Transduction
  • Vascular Endothelial Growth Factor A
  • Zebrafish
  • Zebrafish Proteins