Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

TRPC channels are necessary mediators of pathologic cardiac hypertrophy.

Pathologic hypertrophy of the heart is regulated through membrane-bound receptors and intracellular signaling pathways that function, in part, by altering Ca(2+) handling and Ca(2+)-dependent signaling effectors. Transient receptor potential canonical (TRPC) channels are important mediators of Ca(2+)-dependent signal transduction that can sense stretch or activation of membrane-bound receptors. Here we generated cardiac-specific transgenic mice that express dominant-negative (dn) TRPC3, dnTRPC6, or dnTRPC4 toward blocking the activity of the TRPC3/6/7 or TRPC1/4/5 subfamily of channels in the heart. Remarkably, all three dn transgenic strategies attenuated the cardiac hypertrophic response following either neuroendocrine agonist infusion or pressure-overload stimulation. dnTRPC transgenic mice also were partially protected from loss of cardiac functional performance following long-term pressure-overload stimulation. Importantly, adult myocytes isolated from hypertrophic WT hearts showed a unique Ca(2+) influx activity under store-depleted conditions that was not observed in myocytes from hypertrophied dnTRPC3, dnTRPC6, or dnTRPC4 hearts. Moreover, dnTRPC4 inhibited the activity of the TRPC3/6/7 subfamily in the heart, suggesting that these two subfamilies function in coordinated complexes. Mechanistically, inhibition of TRPC channels in transgenic mice or in cultured neonatal myocytes significantly reduced activity in the calcineurin-nuclear factor of activated T cells (NFAT), a known Ca(2+)-dependent hypertrophy-inducing pathway. Thus, TRPC channels are necessary mediators of pathologic cardiac hypertrophy, in part through a calcineurin-NFAT signaling pathway.

Pubmed ID: 20351294


  • Wu X
  • Eder P
  • Chang B
  • Molkentin JD


Proceedings of the National Academy of Sciences of the United States of America

Publication Data

April 13, 2010

Associated Grants

  • Agency: NHLBI NIH HHS, Id: P50 HL052318
  • Agency: NHLBI NIH HHS, Id: P50 HL077101
  • Agency: NHLBI NIH HHS, Id: R01 HL060562
  • Agency: Howard Hughes Medical Institute, Id:

Mesh Terms

  • Animals
  • Calcineurin
  • Cardiomegaly
  • Echocardiography
  • Genes, Dominant
  • Mice
  • Mice, Transgenic
  • Myocytes, Cardiac
  • NFATC Transcription Factors
  • Promoter Regions, Genetic
  • Signal Transduction
  • TRPC Cation Channels
  • Transient Receptor Potential Channels