• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex.

Mitofusins (Mfn1 and Mfn2) are outer mitochondrial membrane proteins involved in regulating mitochondrial dynamics. Mutations in Mfn2 cause Charcot-Marie-Tooth disease (CMT) type 2A, an inherited disease characterized by degeneration of long peripheral axons, but the nature of this tissue selectivity remains unknown. Here, we present evidence that Mfn2 is directly involved in and required for axonal mitochondrial transport, distinct from its role in mitochondrial fusion. Live imaging of neurons cultured from Mfn2 knock-out mice or neurons expressing Mfn2 disease mutants shows that axonal mitochondria spend more time paused and undergo slower anterograde and retrograde movements, indicating an alteration in attachment to microtubule-based transport systems. Furthermore, Mfn2 disruption altered mitochondrial movement selectively, leaving transport of other organelles intact. Importantly, both Mfn1 and Mfn2 interact with mammalian Miro (Miro1/Miro2) and Milton (OIP106/GRIF1) proteins, members of the molecular complex that links mitochondria to kinesin motors. Knockdown of Miro2 in cultured neurons produced transport deficits identical to loss of Mfn2, indicating that both proteins must be present at the outer membrane to mediate axonal mitochondrial transport. In contrast, disruption of mitochondrial fusion via knockdown of the inner mitochondrial membrane protein Opa1 had no effect on mitochondrial motility, indicating that loss of fusion does not inherently alter mitochondrial transport. These experiments identify a role for mitofusins in directly regulating mitochondrial transport and offer important insight into the cell type specificity and molecular mechanisms of axonal degeneration in CMT2A and dominant optic atrophy.

Pubmed ID: 20335458

Authors

  • Misko A
  • Jiang S
  • Wegorzewska I
  • Milbrandt J
  • Baloh RH

Journal

The Journal of neuroscience : the official journal of the Society for Neuroscience

Publication Data

March 24, 2010

Associated Grants

  • Agency: NIA NIH HHS, Id: AG013730
  • Agency: NINDS NIH HHS, Id: K08 NS055980
  • Agency: NINDS NIH HHS, Id: K08 NS055980-03
  • Agency: NINDS NIH HHS, Id: NS055980
  • Agency: NINDS NIH HHS, Id: NS057105
  • Agency: NINDS NIH HHS, Id: R01 NS069669

Mesh Terms

  • Amino Acids
  • Animals
  • Axonal Transport
  • Axons
  • Carrier Proteins
  • Cells, Cultured
  • Exoribonucleases
  • Exosome Multienzyme Ribonuclease Complex
  • GTP Phosphohydrolases
  • Ganglia, Spinal
  • Green Fluorescent Proteins
  • Humans
  • Immunoprecipitation
  • Membrane Proteins
  • Mice
  • Mice, Knockout
  • Mitochondria
  • Mitochondrial Proteins
  • Mutation
  • Nerve Tissue Proteins
  • Neurons
  • RNA, Small Interfering
  • RNA-Binding Proteins
  • Transfection
  • rho GTP-Binding Proteins