Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity.

The Journal of experimental medicine | 2010

Endothelial cell-cell junctions regulate vascular permeability, vasculogenesis, and angiogenesis. Familial cerebral cavernous malformations (CCMs) in humans result from mutations of CCM2 (malcavernin, OSM, MGC4607), PDCD10 (CCM3), or KRIT1 (CCM1), a Rap1 effector which stabilizes endothelial cell-cell junctions. Homozygous loss of KRIT1 or CCM2 produces lethal vascular phenotypes in mice and zebrafish. We report that the physical interaction of KRIT1 and CCM2 proteins is required for endothelial cell-cell junctional localization, and lack of either protein destabilizes barrier function by sustaining activity of RhoA and its effector Rho kinase (ROCK). Protein haploinsufficient Krit1(+/-) or Ccm2(+/-) mouse endothelial cells manifested increased monolayer permeability in vitro, and both Krit1(+/-) and Ccm2(+/-) mice exhibited increased vascular leak in vivo, reversible by fasudil, a ROCK inhibitor. Furthermore, we show that ROCK hyperactivity occurs in sporadic and familial human CCM endothelium as judged by increased phosphorylation of myosin light chain. These data establish that KRIT1-CCM2 interaction regulates vascular barrier function by suppressing Rho/ROCK signaling and that this pathway is dysregulated in human CCM endothelium, and they suggest that fasudil could ameliorate both CCM disease and vascular leak.

Pubmed ID: 20308363 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SigmaStat (tool)

RRID:SCR_010285

Software tool for data graphing and analysis by Systat Software, Inc.

View all literature mentions

HUVEC-C (tool)

RRID:CVCL_2959

Cell line HUVEC-C is a Finite cell line with a species of origin Homo sapiens

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions