Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research | 2010

Ubiquitin ligase Smurf1-deficient mice develop an increased-bone-mass phenotype in an age-dependent manner. It was reported that such a bone-mass increase is related to enhanced activities of differentiated osteoblasts. Although osteoblasts are of mesenchymal stem cell (MSC) origin and MSC proliferation and differentiation can have significant impacts on bone formation, it remains largely unknown whether regulation of MSCs plays a role in the bone-mass increase of Smurf1-deficient mice. In this study we found that bone marrow mesenchymal progenitor cells from Smurf1(-/-) mice form significantly increased alkaline phosphatase-positive colonies, indicating roles of MSC proliferation and differentiation in bone-mass accrual of Smurf1(-/-) mice. Interestingly, Smurf1(-/-) cells have an elevated protein level of AP-1 transcription factor JunB. Biochemical experiments demonstrate that Smurf1 interacts with JunB through the PY motif and targets JunB protein for ubiquitination and proteasomal degradation. Indeed, Smurf1-deficient MSCs have higher proliferation rates, consistent with the facts that cyclin D1 mRNA and protein both are increased in Smurf1(-/-) cells and JunB can induce cyclinD1 promoter. Moreover, JunB overexpression induces osteoblast differentiation, shown by higher expression of osteoblast markers, and JunB knock-down not only decreases osteoblast differentiation but also restores the osteogenic potential to wild-type level in Smurf1(-/-) cells. In conclusion, our results suggest that Smurf1 negatively regulates MSC proliferation and differentiation by controlling JunB turnover through an ubiquitin-proteasome pathway.

Pubmed ID: 20200942 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAMS NIH HHS, United States
    Id: R21 AR053586
  • Agency: NIAMS NIH HHS, United States
    Id: AR53586
  • Agency: NIAMS NIH HHS, United States
    Id: R01 AR055915
  • Agency: NIAMS NIH HHS, United States
    Id: R01 AR048697
  • Agency: NIAMS NIH HHS, United States
    Id: AR48697

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

C2C12 (tool)

RRID:CVCL_0188

Cell line C2C12 is a Spontaneously immortalized cell line with a species of origin Mus musculus (Mouse)

View all literature mentions