Literature search services are currently unavailable. During our hosting provider's UPS upgrade we experienced a hardware failure and are currently working to resolve the issue.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The novel endosomal membrane protein Ema interacts with the class C Vps-HOPS complex to promote endosomal maturation.

Endosomal maturation is critical for accurate and efficient cargo transport through endosomal compartments. Here we identify a mutation of the novel Drosophila gene, ema (endosomal maturation defective) in a screen for abnormal synaptic overgrowth and defective protein trafficking. Ema is an endosomal membrane protein required for trafficking of fluid-phase and receptor-mediated endocytic cargos. In the ema mutant, enlarged endosomal compartments accumulate as endosomal maturation fails, with early and late endosomes unable to progress into mature degradative late endosomes and lysosomes. Defective endosomal down-regulation of BMP signaling is responsible for the abnormal synaptic overgrowth. Ema binds to and genetically interacts with Vps16A, a component of the class C Vps-HOPS complex that promotes endosomal maturation. The human orthologue of ema, Clec16A, is a candidate susceptibility locus for autoimmune disorders, and its expression rescues the Drosophila mutant demonstrating conserved function. Characterizing this novel gene family identifies a new component of the endosomal pathway and provides insights into class C Vps-HOPS complex function.

Pubmed ID: 20194640


  • Kim S
  • Wairkar YP
  • Daniels RW
  • DiAntonio A


The Journal of cell biology

Publication Data

March 8, 2010

Associated Grants

  • Agency: NIDA NIH HHS, Id: DA 020812
  • Agency: NIDA NIH HHS, Id: R01 DA020812
  • Agency: NIDA NIH HHS, Id: R01 DA020812-05

Mesh Terms

  • Animals
  • Bone Morphogenetic Proteins
  • Drosophila Proteins
  • Drosophila melanogaster
  • Endosomes
  • Humans
  • Intracellular Membranes
  • Lectins, C-Type
  • Molecular Sequence Data
  • Monosaccharide Transport Proteins
  • Multiprotein Complexes
  • Neuromuscular Junction
  • Plant Proteins
  • Recombinant Fusion Proteins
  • Synapses
  • Two-Hybrid System Techniques
  • Vesicular Transport Proteins