Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Modulation of cardiac ERG1 K(+) channels by cGMP signaling.

Journal of molecular and cellular cardiology | 2010

Different K(+) currents have been implicated in the myocardial action potential repolarization including the I(Kr). ERG1 alpha subunits, identified as the molecular correlate of I(Kr), have been shown to form heteromultimeric channels in the heart and their activity is modulated by a complex interplay of signal transduction events. Using electrophysiological techniques, we examined the effects of the cGMP-analogue 8-Br-cGMP on rat and guinea-pig papillary action potential duration (APD), on the biophysical properties of heterologously expressed homo- and heteromeric ERG1 channels, and on cardiac I(Kr). 8-Br-cGMP prolonged APD by about 25% after pharmacological inhibition of L-type Ca(2+) currents and I(Ks). The prolongation was completely abolished by prior application of the hERG channel blocker E-4031 or the protein kinase G (PKG) inhibitor Rp-8-Br-cGMPS. Expression analysis revealed the presence of both ERG1a and -1b subunits in rat papillary muscle. Both 8-Br-cGMP and ANP inhibited heterologously expressed ERG1b and even stronger ERG1a/1b channels, whereas ERG1a channels remained unaffected. The inhibitory 8-Br-cGMP effects were PKG-dependent and involved a profound ERG current reduction, which was also observed with cardiac AP clamp recordings. Measurements of I(Kr) from isolated mouse cardiomyocytes using Cs(+) as charge carrier exhibited faster deactivation kinetics in atrial than in ventricular myocytes consistent with a higher relative expression of ERG1b transcripts in atria than in ventricles. 8-Br-cGMP significantly reduced I(Kr) in atrial, but not in ventricular myocytes. These findings provide first evidence that through heteromeric assembly ERG1 channels become a critical target of cGMP-PKG signaling linking cGMP accumulation to cardiac I(Kr) modulation.

Pubmed ID: 20188738 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Clontech (tool)

RRID:SCR_004423

An Antibody supplier

View all literature mentions

Roche LightCycler 480 Real Time PCR System (tool)

RRID:SCR_018626

LightCycler 480 Instrument is a real-time PCR device, allowing the use of additional thermal block cycler units (96-well and 384-well format) with the system. The LightCycler 480 Block Kit 384 Silver comprises a block cycler unit for 384-well PCR plates, a corresponding block lid for the 384-well PCR plates, and a storage box for both accessories.

View all literature mentions