Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A role for p53 in mitochondrial stress response control of longevity in C. elegans.

Experimental gerontology | 2010

As in the case of aging, many degenerative disorders also result from progressive mitochondrial deterioration and cellular damage accumulation. Therefore, preventing damage accumulation may delay aging and help to prevent degenerative disorders, especially those associated with mitochondrial dysfunction. In the nematode Caenorhabditis elegans a mild mitochondrial dysfunction prolongs the lifespan. We previously proposed that, following a mild mitochondrial dysfunction, protective stress responses are activated in a hormetic-like fashion, and ultimately account for extended animal's lifespan. We recently showed that in C. elegans, lifespan extension induced by reduced expression of different mitochondrial proteins involved in electron transport chain functionality requires p53/cep-1. In this paper we find that reducing the expression of frataxin, the protein defective in patients with Friedreich's ataxia, triggers a complex stress response, and that the associated induction of the antioxidant glutathione-S-transferase is regulated by cep-1. Given the high percentage of homology between human and nematode genes and the conservation of fundamental intracellular pathways between the two species, identification of molecular mechanisms activated in response to frataxin suppression in C. elegans may suggest novel therapeutic approaches to prevent the accumulation of irreversible damage and the consequent appearance of symptoms in Friedreich's ataxia and possibly other human mitochondrial-associated diseases. The same pathways could be exploitable for delaying the aging process ascribed to mitochondrial degeneration.

Pubmed ID: 20172019 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Telethon, Italy
    Id: GGP06059

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


geNORM (tool)

RRID:SCR_006763

Software to determine most stable reference (housekeeping) genes from set of tested candidate reference genes in given sample panel. From this, gene expression normalization factor can be calculated for each sample based geometric mean of user-defined number of reference genes.

View all literature mentions

WormBase (tool)

RRID:SCR_003098

Central data repository for nematode biology including complete genomic sequence, gene predictions and orthology assignments from range of related nematodes.Data concerning genetics, genomics and biology of C. elegans and related nematodes. Derived from initial ACeDB database of C. elegans genetic and sequence information, WormBase includes genomic, anatomical and functional information of C. elegans, other Caenorhabditis species and other nematodes. Maintains public FTP site where researchers can find many commonly requested files and datasets, WormBase software and prepackaged databases.

View all literature mentions