Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner eIF3b/PRT1-RRM and with eIF1A in stringent AUG selection.

Journal of molecular biology | 2010

Despite recent progress in our understanding of the numerous functions of individual subunits of eukaryotic translation initiation factor (eIF) 3, little is known on the molecular level. Using NMR spectroscopy, we determined the first solution structure of an interaction between eIF3 subunits. We revealed that a conserved tryptophan residue in the human eIF3j N-terminal acidic motif (NTA) is held in the helix alpha1 and loop 5 hydrophobic pocket of the human eIF3b RNA recognition motif (RRM). Mutating the corresponding "pocket" residues in its yeast orthologue reduces cellular growth rate, eliminates eIF3j/HCR1 association with eIF3b/PRT1 in vitro and in vivo, affects 40S occupancy of eIF3, and produces a leaky scanning defect indicative of a deregulation of the AUG selection process. Unexpectedly, we found that the N-terminal half of eIF3j/HCR1 containing the NTA is indispensable and sufficient for wild-type growth of yeast cells. Furthermore, we demonstrate that deletion of either j/HCR1 or its N-terminal half only, or mutation of the key tryptophan residues results in the severe leaky scanning phenotype partially suppressible by overexpressed eIF1A, which is thought to stabilize properly formed preinitiation complexes at the correct start codon. These findings indicate that eIF3j/HCR1 remains associated with the scanning preinitiation complexes and does not dissociate from the small ribosomal subunit upon mRNA recruitment, as previously believed. Finally, we provide further support for earlier mapping of the ribosomal binding site for human eIF3j by identifying specific interactions of eIF3j/HCR1 with small ribosomal proteins RPS2 and RPS23 located in the vicinity of the mRNA entry channel. Taken together, we propose that eIF3j/HCR1 closely cooperates with the eIF3b/PRT1 RRM and eIF1A on the ribosome to ensure proper formation of the scanning-arrested conformation required for stringent AUG recognition.

Pubmed ID: 20060839 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: FIC NIH HHS, United States
    Id: R01 TW007271-01
  • Agency: Wellcome Trust, United Kingdom
    Id: 076456
  • Agency: FIC NIH HHS, United States
    Id: R01 TW007271
  • Agency: Wellcome Trust, United Kingdom
  • Agency: Wellcome Trust, United Kingdom
    Id: 076456/Z/05/Z
  • Agency: Medical Research Council, United Kingdom
    Id: MC_U105170649

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cold Spring Harbor Laboratory (tool)

RRID:SCR_008326

Non profit, private research and education institution that performs molecular and genetic research used to generate methods for better diagnostics and treatments for cancer and neurological diseases. Research of cancer causing genes and their respective signaling pathways, mutations and structural variations of the human genome that could cause neurodevelopmental and neurodegenerative illnesses such as autism, schizophrenia, and Alzheimer's and Parkinson's diseases and also research in plant genetics and quantitative biology.

View all literature mentions

Assisted Model Building with Energy Refinement (AMBER) (tool)

RRID:SCR_014230

Software package of molecular simulation programs. It is distributed into AmberTools15 and Amber14. AmberTools15 is a software package which can carry out complete molecular dynamics simulations with either explicit water or generalized Born solvent models. It is distributed in source code format and must be compiled in order to be used. Amber14 builds on AmberTools15 by adding the pmemd program, which provides better performance on multiple CPUs and dramatic speed improvements on GPUs compared to sander (molecular dynamics). GPU info, manuals, and tutorials are available on the website.

View all literature mentions

CYANA (tool)

RRID:SCR_014229

Software for automated structure calculation of biological macromolecules on basis of conformational constraints from nuclear magnetic resonance. Program for automated NMR protein structure calculation. CYANA requires a sufficient list of assigned chemical shifts and lists of cross-peak positions and columns from 2D, 3D, or4D NOESY spectra in order to calculate the assignment of the NOESY cross-peaks and the 3D structure of the protein in solution.

View all literature mentions