Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling.

PloS one | 2009

A CpG island methylator phenotype (CIMP) is displayed by a distinct subset of colorectal cancers with a high frequency of DNA hypermethylation in a specific group of CpG islands. Recent studies have shown that an activating mutation of BRAF (BRAF(V600E)) is tightly associated with CIMP, raising the question of whether BRAF(V600E) plays a causal role in the development of CIMP or whether CIMP provides a favorable environment for the acquisition of BRAF(V600E). We employed Illumina GoldenGate DNA methylation technology, which interrogates 1,505 CpG sites in 807 different genes, to further study this association. We first examined whether expression of BRAF(V600E) causes DNA hypermethylation by stably expressing BRAF(V600E) in the CIMP-negative, BRAF wild-type COLO 320DM colorectal cancer cell line. We determined 100 CIMP-associated CpG sites and examined changes in DNA methylation in eight stably transfected clones over multiple passages. We found that BRAF(V600E) is not sufficient to induce CIMP in our system. Secondly, considering the alternative possibility, we identified genes whose DNA hypermethylation was closely linked to BRAF(V600E) and CIMP in 235 primary colorectal tumors. Interestingly, genes that showed the most significant link include those that mediate various signaling pathways implicated in colorectal tumorigenesis, such as BMP3 and BMP6 (BMP signaling), EPHA3, KIT, and FLT1 (receptor tyrosine kinases) and SMO (Hedgehog signaling). Furthermore, we identified CIMP-dependent DNA hypermethylation of IGFBP7, which has been shown to mediate BRAF(V600E)-induced cellular senescence and apoptosis. Promoter DNA hypermethylation of IGFBP7 was associated with silencing of the gene. CIMP-specific inactivation of BRAF(V600E)-induced senescence and apoptosis pathways by IGFBP7 DNA hypermethylation might create a favorable context for the acquisition of BRAF(V600E) in CIMP+ colorectal cancer. Our data will be useful for future investigations toward understanding CIMP in colorectal cancer and gaining insights into the role of aberrant DNA hypermethylation in colorectal tumorigenesis.

Pubmed ID: 20027224 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA118699
  • Agency: NCI NIH HHS, United States
    Id: R01 CA075090-09
  • Agency: NCI NIH HHS, United States
    Id: R01 CA075090
  • Agency: NCI NIH HHS, United States
    Id: R01 CA118699-02
  • Agency: Worldwide Cancer Research, United Kingdom
    Id: 13-0245

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Illumina (tool)

RRID:SCR_010233

American company incorporated that develops, manufactures and markets integrated systems for the analysis of genetic variation and biological function. Provides a line of products and services that serve the sequencing, genotyping and gene expression and proteomics markets. Its headquarters are located in San Diego, California.

View all literature mentions

Pompep (tool)

RRID:SCR_010536

FTP site to access Schizosaccharomyces pombe protein data.

View all literature mentions

Motif Mutation Analysis for Regulatory Genomic Elements (tool)

RRID:SCR_021902

Software package that integrates genome wide genetic variation with epigenetic data to identify collaborative transcription factor pairs. Optimized to work with chromatin accessibility assays such as ATAC-seq or DNase I hypersensitivity, as well as transcription factor binding data collected by ChIP-seq. Used to identify combinations of cell type specific transcription factors while simultaneously interpreting functional effects of non-coding genetic variation.

View all literature mentions