Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase.

Cancer cell | 2009

2-Oxoglutarate-dependent dioxygenases, including the EglN prolyl hydroxylases that regulate HIF, can be inhibited with drug-like molecules. EglN2 is estrogen inducible in breast carcinoma cells and the lone Drosophila EglN interacts genetically with Cyclin D1. Although EglN2 is a nonessential gene, we found that EglN2 inactivation decreases Cyclin D1 levels and suppresses mammary gland proliferation in vivo. Regulation of Cyclin D1 is a specific attribute of EglN2 among the EglN proteins and is HIF independent. Loss of EglN2 catalytic activity inhibits estrogen-dependent breast cancer tumorigenesis and can be rescued by exogenous Cyclin D1. EglN2 depletion also impairs the fitness of lung, brain, and hematopoietic cancer lines. These findings support the exploration of EglN2 inhibitors as therapeutics for estrogen-dependent breast cancer and other malignancies.

Pubmed ID: 19878873 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: 5R01CA068490-14
  • Agency: NCI NIH HHS, United States
    Id: F32 CA139929
  • Agency: NCI NIH HHS, United States
    Id: R01 CA068490
  • Agency: NCI NIH HHS, United States
    Id: K99 CA160351
  • Agency: NCI NIH HHS, United States
    Id: R00 CA160351
  • Agency: NCI NIH HHS, United States
    Id: R01 CA068490-14
  • Agency: Howard Hughes Medical Institute, United States

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Oncomine Research Platform (tool)

RRID:SCR_007834

Oncomine Research Platform is a partially-commercial suite of products for online cancer gene expression analysis dedicated to the academic and non-profit research community. Oncomine combines a rapidly growing compendium of 20,000+ cancer transcriptome profiles with a sophisticated analysis engine and a powerful web application for data-mining and visualization. Oncomine facilitates rapid and reliable biomarker and therapeutic target discovery, validation and prioritization. Oncomine was developed by physicians, scientists, and software engineers at the University of Michigan and is now fully supported for the academic and non-profit research community by Compendia Bioscience.

View all literature mentions

dChip Software (tool)

RRID:SCR_013504

Software for analysis and visualization of gene expression and SNP microarrays.

View all literature mentions