Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Inhibition of glutamate transporters couples to Kv4.2 dephosphorylation through activation of extrasynaptic NMDA receptors.

Neuroscience | 2010

Activation of glutamate receptors is known to modulate K(+) channel surface trafficking, phosphorylation, and function, and increasing evidence has implicated K(+) channels in plastic changes in glutamatergic synapses. Kv4.2 channels control the amplitude of back-propagating action potentials and shape postsynaptic responses in hippocampus, and synaptic glutamate receptor activation leads to increased phosphorylation of Kv4.2 channels that is associated with enhanced synaptic plasticity. Thus, we investigated the possibility that activation of extrasynaptic NMDA-type glutamate receptors couples to Kv4.2 channel dephosphorylation. In hippocampal neurons, we found that selective activation of extrasynaptic NMDA receptors dephosphorylates Kv4.2 channels, and driving synaptic activity increases phosphorylation of Kv4.2. We also observed that Ca(2+) entry through NMDA receptors is necessary for dephosphorylation of Kv4.2 channels. Consistent with a synaptic and extrasynaptic localization at hippocampal synapses, a fraction of Kv4.2 channel clusters was found to localize outside of pre- and postsynaptic markers. Excitatory amino acid transporters (EAATs) regulate ambient extracellular glutamate levels that active extrasynaptic NMDA receptors, and inhibition of glutamate uptake by blocking EAATs with the non-selective transporter inhibitor dl-threo-beta-benzyloxyaspartic acid (TBOA) or the EAAT1/3 selective inhibitor l-serine O-sulfate (SOS) dephosphorylates Kv4.2 channels. These findings in conjunction with previous reports support the interesting possibility that synaptic and extrasynaptic NMDA receptors bi-directionally regulate phosphorylation levels of Kv4.2 channels in hippocampus. Moreover, we observed that EAAT activity controls extrasynaptic NMDA receptor modulation of Kv4.2 channel dephosphorylation.

Pubmed ID: 19850106 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Associated grants

  • Agency: NIAAA NIH HHS, United States
    Id: R01 AA010983-12A1
  • Agency: NIAAA NIH HHS, United States
    Id: AA010983
  • Agency: NIAAA NIH HHS, United States
    Id: K99 AA017922
  • Agency: NIAAA NIH HHS, United States
    Id: R29 AA010983
  • Agency: NIAAA NIH HHS, United States
    Id: K99 AA017922-01A1
  • Agency: NIAAA NIH HHS, United States
    Id: AA017922
  • Agency: NIAAA NIH HHS, United States
    Id: R01 AA010983
  • Agency: NIAAA NIH HHS, United States
    Id: R00 AA017922

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NeuroMab (tool)

RRID:SCR_003086

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

View all literature mentions

Imaris (tool)

RRID:SCR_007370

Imaris provides range of capabilities for working with three dimensional images. Uses flexible editing and processing functions, such as interactive surface rendering and object slicing capabilities. And output to standard TIFF, Quicktime and AVI formats. Imaris accepts virtually all image formats that are used in confocal microscopy and many of those used in wide-field image acquisition.

View all literature mentions

Kv4.2 potassium channel (antibody)

RRID:AB_10672254

This monoclonal targets Kv4.2 potassium channel

View all literature mentions

Anti-Kv4.2 K+ Channel Antibody (antibody)

RRID:AB_2131945

This monoclonal targets Kv4.2 K+ channel

View all literature mentions