• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Endogenous regulation of cardiovascular function by apelin-APJ.

Studies have shown significant cardiovascular effects of exogenous apelin administration, including the potent activation of cardiac contraction. However, the role of the endogenous apelin-APJ pathway is less clear. To study the loss of endogenous apelin-APJ signaling, we generated mice lacking either the ligand (apelin) or the receptor (APJ). Apelin-deficient mice were viable, fertile, and showed normal development. In contrast, APJ-deficient mice were not born in the expected Mendelian ratio, and many showed cardiovascular developmental defects. Under basal conditions, both apelin and APJ null mice that survived to adulthood manifested modest decrements in contractile function. However, with exercise stress both mutant lines demonstrated consistent and striking decreases in exercise capacity. To explain these findings, we explored the role of autocrine signaling in vitro using field stimulation of isolated left ventricular cardiomyocytes lacking either apelin or APJ. Both groups manifested less sarcomeric shortening and impaired velocity of contraction and relaxation with no difference in calcium transient. Taken together, these results demonstrate that endogenous apelin-APJ signaling plays a modest role in maintaining basal cardiac function in adult mice with a more substantive role during conditions of stress. In addition, an autocrine pathway seems to exist in myocardial cells, the ablation of which reduces cellular contraction without change in calcium transient. Finally, differences in the developmental phenotype between apelin and APJ null mice suggest the possibility of undiscovered APJ ligands or ligand-independent effects of APJ.

Pubmed ID: 19767528

Authors

  • Charo DN
  • Ho M
  • Fajardo G
  • Kawana M
  • Kundu RK
  • Sheikh AY
  • Finsterbach TP
  • Leeper NJ
  • Ernst KV
  • Chen MM
  • Ho YD
  • Chun HJ
  • Bernstein D
  • Ashley EA
  • Quertermous T

Journal

American journal of physiology. Heart and circulatory physiology

Publication Data

November 27, 2009

Associated Grants

  • Agency: NHLBI NIH HHS, Id: F32 HL-097615-01
  • Agency: NHLBI NIH HHS, Id: HL-077676
  • Agency: NHLBI NIH HHS, Id: KO8 HL-083914-01
  • Agency: NHLBI NIH HHS, Id: R01 HL077676
  • Agency: NHLBI NIH HHS, Id: T32 HL-07708

Mesh Terms

  • Animals
  • Autocrine Communication
  • Calcium Signaling
  • Carrier Proteins
  • Echocardiography
  • Exercise Tolerance
  • Female
  • Genotype
  • Heart Defects, Congenital
  • Intercellular Signaling Peptides and Proteins
  • Magnetic Resonance Imaging
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Myocardial Contraction
  • Myocytes, Cardiac
  • Phenotype
  • Receptors, G-Protein-Coupled
  • Sarcomeres
  • Stroke Volume
  • Ventricular Function
  • Ventricular Pressure